cho tam giác ABC nội tiếp đường tròn tâm O đường cao AK, H là trực tâm của tam giác, I là trung điểm cạnh AC, phân giác của góc A cắt đường tròn tại M.Chứng minh a) đường thẳng OM đi qua điểm M của BC b)góc KAM= góc MAO c) tam giác AHB đồng dạng tam giác NOI và AH=2ON
Cho tam giác ABC nhọn (AB<AC) nội tiếp trong đường tròn tâm O có H là trực tâm. Vẽ đường kính AK của (O).
a) Tam giác ABK và tam giác ACK là tam giác gì?
b) Tứ giác BHCK là hình gì?
c) Kẻ OM vuông góc BC ở M. CM: M là trung điểm của BC, HK.
d) CM: OM = 1/2 AH.
Cho tam giác abc nội tiếp đường tròn tâm O. D, E, F lần lượt là trung điểm của BC, CA, AB. H là trực tâm của tam giác abc.
CMR: AH=2OD
BH= 2OE
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), đường kính AD, H là trực tâm tam giác ABC, M là trung điểm BC, G là trọng tâm tam giác ABC
a, CMR AB vuông góc với BD, tứ giác BHCD là hình bình hành
b, CNR H,G,O thẳng hàng
c, TÌm GTLN của AH+BC theo R
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC
a) Chứng minh AH = 2OM
Cho tam giác ABC có các góc là góc nhọn và nội tiếp đường tròn tâm (O). Tiếp tuyến của đường tròn tâm (O) tại B,C cắt nhau tại D
a) Chứng minh OCDB nội tiếp
b) Gọi H là trực tâm của tam giác ABC. M là trung điểm của BC
Chứng minh AH=2OM
Cho tam giác ABC nội tiếp đường tròn (O); gọi D là trung điểm của cạnh BC, H là trực tâm của tam giác ABC. Hai đường thẳng AD và OH cắt nhau tại G. Chứng minh rằng: G là trọng tâm của tam giác ABC.
Bài 8: Cho tam giác ABC nhọn nội tiếp đường tròn (O) ,đường kính AD. Gọi H là trực tâm của tam giác
a)Tính số đo góc ABD
b) Tứ giác BHCD là hình gì?
c)Gọi M là trung điểm BC. Chứng minh 2.OM=AH
Câu c làm kiểu gì nhỉ?
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân