Cho tam giác ABC nhọn với 3 đường cao AD,BE,CF cắt nhau tại H. Gọi M là trung điểm của BC và K đối xứng với H qua M.
a. BHCK là hình gì?
b. Gọi O và I lần lượt là trung điểm của AK và AH, chứng minh IM là trung trực của FE , từ đó suy ra AK vuông góc với FE?
c. Qua O kẻ đường thẳng song song với BC cắt AC tại T. Chứng minh rằng góc BIT vuông?
a: Xét tứ giác BHCK có
M là trung điểm chung của BC và HK
=>BHCK là hình bình hành
b: Xét tứ giác AFHE có
\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
=>AFHE là tứ giác nội tiếp đường tròn đường kính AH
=>AFHE nội tiếp (I)
=>IF=IE
=>I nằm trên đường trung trực của FE(1)
Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp đường tròn đường kính BC
=>BFEC nội tiếp (M)
=>MF=ME
=>M nằm trên đường trung trực của FE(2)
Từ (1) và (2) suy ra IM là đường trung trực của FE
=>IM\(\perp\)FE
Xét ΔHAK có
I,M lần lượt là trung điểm của HA,HK
=>IM là đường trung bình của ΔHAK
=>IM//AK
Ta có: IM//AK
IM\(\perp\)FE
Do đó: FE\(\perp\)AK