a) Xét 2 tam giác DAC và BAE, có:
DA = BA (gt) (1)
AC = AE (gt) (2)
Lại có: ^DAB = ^CAE = \(90^0\) (do AD vuông góc với AB, AE vuông góc với AC)
=> ^DAB + ^BAC = ^CAE + ^BAC
hay ^DAC = ^BAE (3)
Từ (1), (2) và (3), ta suy ra: \(\Delta\)DAC = \(\Delta\)BAE (c.g.c)
=> DC = BE (2 cạnh tương ứng)
b) Gọi giao điểm của BE và DC là O, giao điểm của AB và DC là I
Ta có: ^DIA = ^BIO (đối đỉnh)
^ADC = ^ABE (2 góc tương ứng do tg DAC = tg BAE)
Mà ^DIA + ^ADC = \(90^0\) (tam giác DAI vuông tại A)
=> ^BIO + ^ABE = \(90^0\)
=> ^BOI = \(90^0\)
=> DC vuông góc với BE