Cho tam giác nhọn ABC ( AB < AC ) có đường cao AH.Từ H kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N.
C/m: HAB MAH và HAC NAH.
C/m: AM.AB = AH2 và AM.AB = AN.AC.
C/m: AMN ~ ACB
Gọi I là giao điểm của AH và MN. Chứng minh: IA.MH = IM.AN
Cho tam giác ABC nhọn, biết AB = 15cm, AC = 13cm, đường cao AH = 12cm. Kẻ AH vuông góc với AB ( M thuộc AB ), HN vuông góc với AC ( N thuộc AC )
a) CM tam giác ANH đồng dạng với tam giác AHC
b) Tính HB, HC
c) CM : AN.AC = AM.AB
cho tam giác ABC vuông tại A, AB=15cm, AC=20cm. Kẻ đường cao AH cua tam giac ABC
a) Kẻ HM vuông góc AB, HN vuông góc AC. Chứng minh AM.AB=AN.AC rồi suy ra tam giác AMN~ tam giác ACB
b) Tính tỉ số diện tích hai tam giác AMN vàACB
Cho ∆ABC vuông tại A, đường cao AH, Vẽ HM vuông góc AB, HN vuông góc AC a) Chứng minh: AM.AB=AN.AC b) Cho biết: AH=6cm, BC=15cm.Tính diện tích tứ giác AMHN
cho tam giác ABC vuông tại A cho biết AB=15cm AC=20cm kẻ dường cao AHcua tam giác ABC chứng minh tam giác AHB đồng dạng tam giác CAB và suy ra AB^2=BH.BC tính đọ dài các đoạn thẳng BH và CH kẻ HM vuông góc AB và HN vuông góc AC chứng minh AM.AB=AN.AC chứng minh tam giác AMN đồng dạng tam giác ACB
cho tam giác ABC vuông tại A, AB=15cm, AC=20cm. Kẻ đường cao AH cua tam giac ABC
a)chứng minh \(AB^2=BH.BC\) rồi suy ra các đoạn thẳng BH,CH
b) Kẻ HM vuông góc AB, HN vuông góc AC. Chứng minh AM.AB=AN.AC rồi suy ra tam giác AMN~ tam giác ACB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M và N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh
a) A H 2 = A M . A B ;
b) AM,AB = AN.AC
c) Δ A M N ∽ Δ A C B .
cho tam giác ABC vuông tại A, đường cao AH. a) Chứng minh tam giác HBA đồng dạng với tam giác ABC. b) Cho AB=15cm, AC=20cm. Tính BC, AH. c) Từ H kẻ HM vuông góc với AB, HN vuông góc với AC (M thuộc AB, N thuộc AC). Chứng minh: AB.AM=AC.AN
cho tam giác ABC vuông tại A, đường cao AH. a) Chứng minh tam giác HBA đồng dạng với tam giác ABC. b) Cho AB=15cm, AC=20cm. Tính BC, AH. c) Từ H kẻ HM vuông góc với AB, HN vuông góc với AC (M thuộc AB, N thuộc AC). Chứng minh: AB.AM=AC.AN