góc MKC=góc MIC=90 độ
=>MCKI nội tiếp
=>góc MIK+góc MCK=180 độ
góc MIB+góc MHB=180 độ
=>MIBH nội tiếp
=>góc MIH=góc MBH
góc MIH+góc MIK
=180 độ-góc MCK+góc MBH
=180 độ
=>H,I,K thẳng hàng
góc MKC=góc MIC=90 độ
=>MCKI nội tiếp
=>góc MIK+góc MCK=180 độ
góc MIB+góc MHB=180 độ
=>MIBH nội tiếp
=>góc MIH=góc MBH
góc MIH+góc MIK
=180 độ-góc MCK+góc MBH
=180 độ
=>H,I,K thẳng hàng
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O Trên cạnh BC lấy điểm d d khác B phẩy C sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm O tại M Gọi E là hình chiếu của M trên AC
a Chứng minh tứ giác CDME nội tiếp đường tròn
b/chứng minh MA x MB = MB x ME
C/Gọi i k lần lượt là trung điểm của AB và de chứng minh EK vuông góc với MK
Cho tam giác ABC nội tiếp đường tròn (O). M là một điểm trên cung BC không chứa A. Gọi. D, E, F lần lượt là hình chiếu của M trên BC, AC và AB
a) Chứng minh rằng D, E, F thẳng hàng.
b) Gọi I, J, K lần lượt là các điểm đối xứng của M qua D, E, F. Chứng minh rằng I, J, K cùng thuộc một đường thẳng và đường thẳng đó đi qua trực tâm H của tam giác ABC.
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. H là trực tâm của tam giác. Gọi M là một điểm trên cung BC không chứa điểm A( M không trùng với B và C). Gọi N và P lần lượt là điểm đối xứng của M qua các đường thẳng AB và AC. câu a: chúng minh N, H, P thẳng hàng. câu b: Khi góc BOC = 120 độ, xác định vị trí của điểm M sao cho 1/MB + 1/ MC đạt giá trị nhỏ nhất
Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
2. Giả sử M là điểm di chuyển trên đoạn CE .
a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A,O,H thẳng hàng, từ đó suy ra tứ giác ABHI nội tiếp.
b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O), P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ max.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Trên cùng nhỏ BC lấy điểm M( M khác B, khác C ). Gọi H,I,K lần lượt là điểm đối xứng của M qua AB, BC, AC. Khi H,I,K thẳng hàng tìm vị trí của điểm M để HK lớn nhất
Cho tam giác ABC cố định nội tiếp đường tròn (O). Trên đường tròn lấy 2 điểm bất kì là M và N. Gọi H;I;K lần lượt là hình chiếu của M trên AB; BC; CA. Gọi D;E;F lần lượt là hình chiếu của N lên AB; BC; CA.
a) CMR: H;I;K thẳng hàng và D;E;F thẳng hàng ?
b) CMR: Đường thẳng chứa 3 điểm H;I;K và đường thẳng chứa 3 điểm D;E;F hợp với nhau 1 góc không đổi khi M;N chạy trên (O) ?
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm O
Gọi I là điểm trên cung nhỏ AB ( I không trùng với A và B )
gọi M,N,P theo thứ tự là hình chiếu của I trên các đường thẳng BC, CA, AB
chứng minh 3 điểm M,N,P thẳng hàng
GIÚP MÌNH GẤP VỚI Ạ