cho tam giác ABC nhọn nội tiếp đường tròn (O), hai đường cao BM,CN của tam giác ABC cắt nhau tại H . chứng minh:
a. tứ giác BCMN nội tiếp. xác định tâm E của đường tròn ngoại tiếp tứ giác BCMN
b. tam giác AMN đồng dạng tam giác ABC
c. tia AO cắt đường tròn (O) tại K, cắt MN tại I . chứng minh: tứ giác BHCK là hình bình hành
d. chứng minh: AK vuông góc MN
cho tam giác abc nhọn nội tiếp đường tròn tâm o bán kính R, hai đường cao BM và CN cắt nhau tại H.
a) chứng minh tứ giác BNMC nội tiếp. xác định tâm I của đường tròn ngooaij tiếp tứ giác này
b) chứng minh tam giác AMN đồng dạng tam giác ABC
c) chứng minh OI // AH
d) E là giao điểm của AH và BC, chứng minh MH là phân giác của góc NME
P/s: mình cần câu d thôi ạ
cho tam giác ABC nhọn ( AB<AC) nội tiếp (O), hai đường cao BE , CF cát nhau tại H . tia AO cắt đường tròn (O) tại D. a, chứng minh tứ giác BCEF nội tiếp b, chunwgs minh tứ giác BHCD là hình bình hành c, gọi M là trung điểm của BC, tia AM cắt HO tại G. cm G là trọng tâm của tam giác ABC
Cho tam giác ABC nhọn nội tiếp đường tròn (O), 2 đường cao BE và CF của tam giác ABC cắt nhau tại H. Chứng minh: a. Tứ giác BCEF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BCEF. b. CM: AE.AC = AF.AB c. Tia AO cắt đường tròn (O) tại P, cắt EF tại Q. CM AP vuông góc với EF
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường trogn tâm O, đường cao BE, CF cắt nhau tại H. Tia AO cắt đường tròn tâm O tại D
a) CM: Bốn điểm B,C, E, F cùng thuộc 1 đường tròn
b) CM: Tứ giác BHCD là hình bình hành
c) Gọi M là trung điểm BC, AM cắt HO tại G. CM: G là trọng tâm của tam giác ABC
Cho tam giác ABC nhọn nội tiếp (O) vẽ 2 đường cao BM và CN cắt nhau tại H
a/ Chứng minh AH vuông góc BC
b/ Chứng minh tứ giác AMHN nội tiếp
c/ Chứng minh BCMN thuộc đường tròn xác định tâm I
d/ Vẽ tiếp tuyến Ax. Chứng minh OA vuông góc MN
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o (ab<ac) và ah là đường cao của tam giác.gọi m,n lần lượt là hình chiếu vuông góc của h lên ab,ac.kẽ ne vuông góc với ah.đường thẳng vuông góc với ac kẻ từ c cắt tia ah tại d và ad cắt đường tròn tại f.i là giao điểm của cd và (o).cm:a)góc abc+góc acb= góc bic và tứ giác denc nội tiếp.b)am.ab=an.ac và tứ giác bfic là hình thang cân.c)tứ giác bmed nội tiếp
cho ABC có 3 góc nhọn nội tiếp đường tròn (O;R) các đường cao AD,BE,CF cắt nhau tại H kéo dài AO cắt đường tròn tại điểm K. chứng minh rằng tứ giác BHCK là hình bình hành.