Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
Cho tam giác ABC nhọn nội tiếp (O), M thuộc cong BC nhỏ ( AB < AC ) . Vẽ MD vuông góc với BC tại D, ME vuông góc với AC tại E, F là giao của DE và AB. Xá đinhm vị trí của M trên cung BC nhỏ để A= \(\dfrac{AB}{MF}+\dfrac{AC}{ME}+\dfrac{BC}{MD}\) MIN.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O . điểm M thuộc cung nhỏ BC . vẽ MD , ME , MF lần lượt vuông góc với AB , , AC tại D,E,F
A/chứng minh các tứ giác MEFC nội tiếp và góc DBM = góc DEM
B/ chứng minh D,E,F thẳng hàng và MB.MF=MD.MC
C/gọi V là trực tâm của tam giác ABC . tia BV cắt đường tròn O tại R . chứng minh góc FRV = góc FVR . từ đó suy ra DE đi qua trung điểm của VM
thank :))
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Điểm M thuộc cùng nhỏ BC. Và MD, ME, MF lần lượt vuông góc với AB, BC, AC tại D, E, F. a) Chứng minh : tử giác MEFC nội tiếp và DBM = DEM b) Chứng minh D, E, F thẳng hàng và MB.MF=MD.MC. c) Gọi V là trực tâm của tam giác ABC. Tia BV cắt đường tròn (O) tại R. Gọi N lần lượt là giao điểm của BV với DF Chứng minh FRV = FVR và từ giác MERN nội tiếp,
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn tâm O. Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh bốn điểm A,B,H,E cùng nằm trên một đường tròn.
b) Chứng minh HE//CD.
c) Gọi M là trung điểm của BC. Chứng minh ME=MF
Cho tam giác nhọn ABC nội tiếp đường tròn ( o ) ( AB< AC ) M là điểm trên cung BC , vẽ MD vuông góc AB tại D ; ME vuông góc AC tại E. Gọi F là giao điểm của BC và DE. Cmr: a) 4 điểm A,D,M,E cùng thuộc 1 đường tròn b) Tam giác MBC đồng dạng Tam giác MDE c) MF vuông góc BC d) DE <= BC
Cho tam giác ABC có ba góc nhọn và AB < AC, nội tiếp (O; R) Vẽ đường kính AD của (O). Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC)
1, Chứng minh: Bốn điểm A, B, H, E cùng thuộc một đường tròn
2, Gọi M là trung điểm của BC. Chứng minh: HE // CD và ME = MF
3, Gọi S là diện tích tam giác ABC. Chứng minh: 4S.R = AB.AC.BC
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: góc AFE=góc ABC
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm,góc BAC=60, góc ABC=80. Tính độ dài đoạn vuông góc hạ từ A
xuống EF.
cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O và AB < AC . vẽ đường kính AD của đường tròn (O) . kẻ BE và CF vuông góc với AD (E,F thuộc AD) . kẻ AH vuông góc với BC (H thuộc BC).
1) chứng minh bốn điểm A, B, H, E cùng nằm trên một đường tròn.
2) chứng minh HE song song với CD.
3) goi M là trung điểm của BC . chứng minh ME = MF