a: AE+EC=AC
=>\(EC+\dfrac{2}{5}AC=AC\)
=>\(EC=\dfrac{3}{5}AC\)
\(\dfrac{AE}{EC}=\dfrac{\dfrac{2}{5}AC}{\dfrac{3}{5}AC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)
Xét ΔACB có IE//AB
nên \(\dfrac{IC}{IB}=\dfrac{EC}{EA}=\dfrac{3}{2}\)
b: Xét ΔACB có IE//AB
nên \(\dfrac{IE}{AB}=\dfrac{CI}{CB}=\dfrac{3}{5}\)
AD+DB=AB
=>\(DB+\dfrac{2}{3}AB=AB\)
=>\(DB=\dfrac{1}{3}AB\)
=>AB=3BD
\(\dfrac{IE}{AB}=\dfrac{3}{5}\)
=>\(\dfrac{IE}{3BD}=\dfrac{3}{5}\)
=>\(\dfrac{IE}{BD}=\dfrac{9}{5}\)
Xét ΔFEI có DB//EI
nên \(\dfrac{FD}{FE}=\dfrac{DB}{EI}=\dfrac{5}{9}\)
=>\(FD=\dfrac{5}{9}FE\)
FD+DE=FE
=>\(DE+\dfrac{5}{9}FE=FE\)
=>\(DE=\dfrac{4}{9}FE\)
\(\dfrac{DF}{DE}=\dfrac{\dfrac{5}{9}EF}{\dfrac{4}{9}EF}=\dfrac{5}{9}:\dfrac{4}{9}=\dfrac{5}{4}\)
c: CI/IB=3/2
=>CI=3/2BI
BI+CI=BC
=>\(BC=\dfrac{3}{2}BI+BI=\dfrac{5}{2}BI\)
Xét ΔFEI có DB//EI
nên \(\dfrac{FB}{BI}=\dfrac{FD}{DE}=\dfrac{5}{4}\)
=>\(FB=\dfrac{5}{4}BI\)
mà \(BC=\dfrac{5}{2}BI\)
nên \(\dfrac{FB}{BC}=\dfrac{\dfrac{5}{4}BI}{\dfrac{5}{2}BI}=\dfrac{5}{4}:\dfrac{5}{2}=\dfrac{1}{2}\)
=>\(\dfrac{FB}{FC}=\dfrac{1}{2+1}=\dfrac{1}{3}\)