a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
Xét ΔABC và ΔAEF có
\(\dfrac{AB}{AE}=\dfrac{AC}{AF}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔABC\(\sim\)ΔAEF(c-g-c)