Cho tam giác ABC nhọn có AB<AC, D và E theo thứ tự là trung điểm của AC và AB. Gọi G là trọng tâm tam giác ABC, M và N tương ứng là trung điểm của CG và BG
1. Chứng minh MNDE là hình bình hành và MN + DE < AB + AC
2. Tìm điều kiện của tam giác ABC để MNDE là hình chữ nhật hoặc hình thoi
3. Trên tia đối của tia DB lấy điểm K sao cho NK = 5NB. Chung minh AK // BC
Giúp mình nha, Thanks nhìu ^^
1: Xet ΔBCA có
E,D lần lượt là trung điểm của AB,AC
nên ED là đừog trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
N,M lần lượt là trung điểm của GB,GC
nên NM là đường trung bình
=>NM//BC và NM=BC/2
=>ED//MN và ED=MN
=>EDMN là hình bình hành
MN+DE=BC/2+BC/2=BC<AB+AC
2 Để MNED là hình chữ nhật thì ED vuông góc EN
=>AG vuông góc BC
=>ΔABC cân tại A
=>AB=AC
3: NK=5NB
=>BK=6BN
=>BK=2BD
->D là trung điểm của BK
Xét tứ giác ABCK có
D là trung điểm chung của AC và BK
=>ABCK là hình bình hành
=>AK//BC