a: Xét ΔAKB vuông tại K và ΔANC vuông tại N có
góc KAB chung
=>ΔAKB đồng dạng với ANC
=>AK/AN=AB/AC
=>AK*AC=AB*AN và AK/AB=AN/AC
b: Xét ΔAKN và ΔABC có
AK/AB=AN/AC
góc KAN chung
=>ΔAKN đồng dạng với ΔABC
=>góc AKN=góc ABC
a: Xét ΔAKB vuông tại K và ΔANC vuông tại N có
góc KAB chung
=>ΔAKB đồng dạng với ANC
=>AK/AN=AB/AC
=>AK*AC=AB*AN và AK/AB=AN/AC
b: Xét ΔAKN và ΔABC có
AK/AB=AN/AC
góc KAN chung
=>ΔAKN đồng dạng với ΔABC
=>góc AKN=góc ABC
Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H a, CM tam giác ABD đồng dạng với tam giác ACE
b, chứng minh góc ADE = góc ABC
c, gọi K là giao điểm của AH và BC, F là giao điểm của DK và HC cm HE.CF=CE.HF
giúp phần c vs ạ
cho tam giác ABC có ba góc nhọn,AB < AC hai đường cao BK và CI cắt nahu tại AH cắt BC tại D chứng minh tam giác ABK đồng dạng vs tam giác ACI và AK/AB=AI/AC
Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.
1. Cho tam giác ABC có 3 góc nhọn, ba đường cao AH, BF và Ce cắt nhay tại I
a) C/M Tam giác AEC đồng dạng với tam giác AFB
b) C/M IA.IH=IC.IE
c) Biết AB=10 cm, AH=8 cm, AC=17 cm. Tính BC và diện tích tam giác ABC
d) C/M HA là tia phân giác của góc EHF
Cho tam giác ABC có góc nhọn ( AB<AC). Vẽ đường cao BD và CE của tam giác ABC cắt nhau tại H
a) C/m tam giác HEB đồng dạng tam giác HDC và HE.HC=HD.HB
b)Vẽ tia AH cắt BC tại F. C/m AF vuông góc với BC và BH.BD=BF.BC
Giúp mình với ạ!
Cho tam giác ABC nhọn ( AB nhỏ hơn AC ) có hai đường cao BD và C cắt nhau tại H
a) Cm tam giác ABD ~ tam giác ACE
b) CM HD.HB = HE>HC
c) AH cắt BC tại F. Kẻ FI vuông góc AC tại I. Cm IF/IC = FA/FC
d) Trên tia đối của AF lấy điểm N sao cho AN = AF. Gọi M là trung điểm của IC
Cm NI vuông góc với FM
Cho tam giác ABC nhọn biết AB<AC . Các đường cao BE , CF cắt nhau tại H . Gọi M là trung điểm của BC . Trên tia đối của tia MH lấy K sao cho MH=MK .
a) cm tứ giác BHCK là hbh
b) cm BK vuông góc với AB , CK vuông góc với AC
c) cm tam giác MEF là tam giác cân
d) vẽ CQ vuông góc với BK tại Q . Chứng minh EF vuông góc với EQ