S A M N S A B C = 1 2 A M . A N . sin A 1 2 A B . A C . sin A = A M A B . A N A C
ĐÁP ÁN D
S A M N S A B C = 1 2 A M . A N . sin A 1 2 A B . A C . sin A = A M A B . A N A C
ĐÁP ÁN D
Gọi S = \(m^2_a+m^2_b+m^2_c\) là tổng bình phương độ dài ba trung tuyến của tam giác ABC. Trong các mệnh đề sau mệnh đề nào đúng?
A. S = \(\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)
B. S = \(a^2+b^2+c^2\)
D. S = 3\(\left(a^2+b^2+c^2\right)\)
C. S = \(\dfrac{3}{2}\left(a^2+b^2+c^2\right)\)
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác $A B C$. Hai điểm $M, N$ được xác định bởi hệ thức $\overrightarrow{B C}+\overrightarrow{M A}=\overrightarrow{0}$, $\overrightarrow{A B}-\overrightarrow{N A}-3 \overrightarrow{A C}=\overrightarrow{0}$. Chứng minh rằng $M N / / A C$.
Cho tam giác ABC đều.Gọi D là điểm đối xứng của C qua AB.Vẽ đường tròn tâm D qua A, B và M là điểm bất kì trên đường tròn đó M ≠ A , M ≠ B Khẳng định nào sau đây đúng?
A. Độ dài MA; MB; MC là độ dài ba cạnh của một tam giác vuông.
B. MA, MB, MC là ba cạnh của 1 tam giác vuông.
C. MA= MB= MC
D. MC> MB> MA
Cho vectơ a → , b → và các số thực m, n, k. Khẳng định nào sau đây là đúng?
A. Từ đẳng thức m a → = n a → suy ra m = n
B. Từ đẳng thức K a → = K b → luôn suy ra a → = b →
C. Từ đẳng thức K a → = K b → luôn suy ra k = 0
D. Từ đẳng thức m a → = n a → và a → ≠ 0 suy ra m = n
Cho ΔABC, gọi M, N lần lượt là trung điểm cảu 2 cạnh AB và AC. Mệnh đề nào đúng dưới đây?
A.\(\overrightarrow{MN}\) VÀ \(\overrightarrow{AC}\) cùng phương
B.\(\overrightarrow{MN}\)và\(\overrightarrow{BC}\) cùng phương
C.\(\overrightarrow{MN}\)và\(\overrightarrow{AB}\)cùng phương
D.\(\overrightarrow{MN}\)và\(\overrightarrow{BN}\)cùng phương
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c
Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Số vectơ bằng vectơ M N → có điểm đầu và điểm cuối trùng với một trong các điểm A, B, C, M, N, P bằng:
A. 1
B. 2
C. 3
D. 6
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ac=7 . Gọi m là giá trị nhỏ nhất của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
a) Biết m đạt giá trị nhỏ nhất khi (a;b;c)=(m;n;p). Tính giá trị của biểu thức P=2p+9n+1945m
b)Biết m đạt gái tị nhỏ nhất thì a=(m/n).c , trong đó m,n là các số nguyên dương và phân số m/n tối giản . Tính giá tị biểu thức S=2m+5n