Cho hình thang ABCD có AB // CD, CD = 3AB. Gọi E, F là các điểm trên cạnh DC sao cho DE = EF = FC, O là giao điểm của À và BE, K là điểm thuộc cạnh bên BC sao cho \(\overrightarrow{BK}=x\overrightarrow{BC}\).
1) Chứng minh đẳng thức sau : \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)
2) Tìm x để 3 điểm D, O, K thẳng hàng.
Cho tam giác ABC có trọng tâm G. M, N lần lượt là trung điểm của AB, BC. Lấy 2 điểm I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\), \(2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) CM: M, N, J thẳng hàng với J là trung điểm của BI
b) Gọi E là điểm thuộc AB sao cho \(\overrightarrow{AE}=k.\overrightarrow{AB}\). Xác định k sao cho C, E, J thẳng hàng
Cho tam giác ABC có AB = 5, BC = 6 và AC = 9. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AC = 3NC. Tính tích vô hướng \(\overrightarrow{AM}.\overrightarrow{BN}\).
Cho hình bình hành ABCD tâm O. Xác định vị trí điểm M thỏa mãn \(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AM}\). Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và dựng điểm K sao cho \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\). Khi đó, điểm K trùng với
Cho Tam giác ABC, trên cạnh AB, AC lấy hai điểm M, N thỏa mãn 4MA=3MB,
2NA=NC. Gọi I là giao điểm BN và CM. Chứng minh rằng: \(4\overrightarrow{AI}=3\overrightarrow{IB}+2\overrightarrow{IC}\)
Cho tam giác ABC nhọn nội tiếp đường tròn (O). H là trực tâm của tam giác ABC.
AD là đường kính của (O). E thuộc AC sao cho HE//BC.
1). Chứng minh rằng các đường thẳng BH và DE cắt nhau trên (O)
2). Gọi F là giao điểm của các đường thẳng EH và AB. Chứng minh rằng A là tâm đường tròn bàng tiếp ứng với đỉnh D của tam giác DEF
3). Gọi I là tâm đường tròn nội tiếp của tam giác DEF. Chứng minh rằng BE, CF và IH đồng quy.
Cho tam giác ABC ngoại tiếp (O). Gọi M,N,P lần lượt là các tiếp điểm của đường tròn với các cạnh BC, CA, AB và thỏa mãn
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=0\). CHứng minh tam giác ABC đều
Cho hình bình hành \(ABCD\) tâm \(O\). Hai điểm \(M\) và \(N\) lần lượt là hai điểm di động trên hai đường thẳng \(AB,AD\) sao cho \(M,C,N\) thẳng hàng. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AD}\left(x,y\ne0\right)\), tìm biểu thức \(A\) thỏa mãn phương trình \(x+y=A.\)
Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số AB/AM+2AC/AN