Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn hương trà

cho tam giác ABC. Gọi D là trung điểm AC. Gọi E là trung điểm BD. Lấy điểm F sao cho D là trung điểm EF. Gọi G là trung điểm BC. Lấy điểm M sao cho G là trung điểm EM. Chứng minh rằng:
a)DF = CM
b) AF = BM
c) tam giác MEC = tam giác DAF
d) GE song song BM và GE = 1/2 DC

Nguyễn Lê Phước Thịnh
18 tháng 12 2023 lúc 23:00

a: Xét ΔGEB và ΔGMC có

GE=GM

\(\widehat{EGB}=\widehat{MGC}\)(hai góc đối đỉnh)

GB=GC

Do đó: ΔGEB=ΔGMC

=>CM=BE

mà BE=ED=DF

nên DF=CM

b: Xét ΔDAF và ΔDCE có

DA=DC

\(\widehat{ADF}=\widehat{CDE}\)

DF=DE

Do đó: ΔDAF=ΔDCE

=>AF=CE(1)

Xét ΔGEC và ΔGMB có

GE=GM

\(\widehat{EGC}=\widehat{MGB}\)(hai góc đối đỉnh)

GC=GB

Do đó: ΔGEC=ΔGMB

=>EC=MB(2)

Từ (1) và (2) suy ra AF=BM

c: Xét ΔGEB và ΔGMC có

GE=GM

\(\widehat{EGB}=\widehat{MGC}\)(hai góc đối đỉnh)

GB=GC

Do đó: ΔGEB=ΔGMC

=>EB=MC

Xét ΔEBM và ΔMCE có

EB=MC

EM chung

BM=CE

Do đó: ΔEBM=ΔMCE

=>\(\widehat{EBM}=\widehat{MCE}\)(3)

Ta có: ΔGEC=ΔGMB

=>\(\widehat{GEC}=\widehat{GMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EC//BM

=>\(\widehat{DEC}=\widehat{EBM}\)(hai góc đồng vị)(4)

Ta có: ΔDEC=ΔDFA

=>\(\widehat{DEC}=\widehat{DFA}\)(5)

Từ (3),(4),(5) suy ra \(\widehat{ECM}=\widehat{AFD}\)

Xét ΔMEC và ΔDAF có

CE=FA

\(\widehat{ECM}=\widehat{AFD}\)

CM=FD

Do đó: ΔMEC=ΔDAF

d: Xét ΔBDC có

G,E lần lượt là trung điểm của BC,BD

=>GE là đường trung bình của ΔBDC

=>GE//DC và \(GE=\dfrac{DC}{2}\)