cho tam giác ABC vuông tại A; đg cao AH. Dvà E lần lượt là hình chiếu của H trên AB và AC cm rằng
a) AD*AB=AH bình phương
AD*AB=AE*AC
b)gọi I là trung điểm của BC cm AI vuông góc vs DE
c)M là trung điểm của BH;N là trung điểm của CH. nhận dạng tứ giác MDEN
d)gọi O là giao điểm của AH và DE . tính tỷ số DIỆN TÍCH TAM GIÁC OMN TRÊN DIỆN TÍCH TAM GIÁC ABC
cho tam giác ABC cân tại A , đường cao AH kẻ EH vuông góc vs AC (e thuộc ac) .gọi I là trung điểm của HE cm AI vuông góc với BE
Cho tam giác ABC vuông tại A ; đg cao AH . Biết \(\frac{AH}{AC}=\frac{3}{5}\) và AB=15 cm
a. Tính BH , CH
b. Gọi E,F lần lượt là hình chiếu của H lên AB;AC . C/M : AH^3=BC.BE.CF
c. C/M : trung tuyến AM của tam gáic ABC vuông góc với EF
d. giả sử S ABC=2 S AEHF . C/M : ABC vuông cân
Tam giác ABC có đường cao CH, phân giác AD, trung tuyến BM.Kẻ MN vuông góc vs HC tại N. Từ A kẻ đường thẳng vuông góc với AC tại A, đường thẳng đó cắt BC tại P. CMR: \(\frac{NM}{BH}=\frac{AM}{AB}\)
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho (O,R) đường kính AB . Gọi C là điểm thuộc đường tròn (O) sao cho AC>BC
a, Chứng minh tam giác ABC vuông
b, Tiếp tuyến tại A và C của (O) cắt nhau tại D. Chứng minh OD vuông góc AC
c, Gọi H là giao điểm OD và AC . CHứng minh 4HO.HD= \(AC^2\)
d, Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC taik M
Chứng minh MB là tiếp tuyến của đường tròn (O)
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
Tam giác ABC vuông tại A ( AB < AC ) , đường cao AH . Lấy M thuộc HC sao cho : HM = AH . Qua M kẻ đường thẳng vuông góc với AB cắt AC tại D .
Chứng minh : 1AH2 =1AD2 +1AC2