Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Bình

Cho tam giác ABC đều nội tiếp (O). Lấy M trên cung nhỏ BC. Trên tia MA lấy D : MD=MB

a) tam giác BMD là tam giác gì? vì sao?

b) c/m AM=BM+CM

Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 14:21

a: Xét (O) có

\(\widehat{AMB}\) là góc nội tiếp chắn cung AB

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AMB}=\widehat{ACB}=60^0\)

Xét ΔMBD có MB=MD

nên ΔMBD cân tại M

Xét ΔMBD cân tại M có \(\widehat{DMB}=60^0\)

nên ΔMBD đều

b: ΔBMD đều

=>\(\widehat{BDM}=60^0\)

\(\widehat{BDA}+\widehat{BDM}=180^0\)(hai góc kề bù)

=>\(\widehat{BDA}=180^0-60^0=120^0\)

Xét (O) có A,B,M,C cùng thuộc (O)

nên ABMC là tứ giác nội tiếp

=>\(\widehat{BMC}+\widehat{BAC}=180^0\)

=>\(\widehat{BMC}=180^0-\widehat{BAC}=180^0-60^0=120^0\)

=>\(\widehat{BMC}=\widehat{BDA}\left(=120^0\right)\left(4\right)\)

Xét (O) có

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{BCM}\) là góc nội tiếp chắn cung BM

Do đó: \(\widehat{BAM}=\widehat{BCM}\)

=>\(\widehat{BAD}=\widehat{MCB}\left(3\right)\)

Xét ΔBAD có \(\widehat{BAD}+\widehat{BDA}+\widehat{ABD}=180^0\)

=>\(\widehat{ABD}=180^0-\widehat{BAD}-\widehat{BDA}\)(1)

Xét ΔBMC có \(\widehat{BMC}+\widehat{MBC}+\widehat{MCB}=180^0\)

=>\(\widehat{MBC}=180^0-\widehat{BMC}-\widehat{MCB}\left(2\right)\)

Từ (1),(2),(3),(4) suy ra \(\widehat{ABD}=\widehat{MBC}\)

Xét ΔBDA và ΔBMC có

BA=BC

\(\widehat{ABD}=\widehat{MBC}\)

BD=BM

Do đó: ΔBDA=ΔBMC

=>AD=MC

AM=AD+DM

mà AD=MC và DM=MB

nên AM=BM+CM


Các câu hỏi tương tự
Lê Minh Thư
Xem chi tiết
Hoàng Vổ
Xem chi tiết
Krish
Xem chi tiết
Minty Nguyễn
Xem chi tiết
Bình Jeon
Xem chi tiết
Bạch Cú
Xem chi tiết
Đỗ Nguyên
Xem chi tiết
vương phong
Xem chi tiết
Pham Trong Bach
Xem chi tiết