a: Xét (O) có
\(\widehat{AMB}\) là góc nội tiếp chắn cung AB
\(\widehat{ACB}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{AMB}=\widehat{ACB}=60^0\)
Xét ΔMBD có MB=MD
nên ΔMBD cân tại M
Xét ΔMBD cân tại M có \(\widehat{DMB}=60^0\)
nên ΔMBD đều
b: ΔBMD đều
=>\(\widehat{BDM}=60^0\)
\(\widehat{BDA}+\widehat{BDM}=180^0\)(hai góc kề bù)
=>\(\widehat{BDA}=180^0-60^0=120^0\)
Xét (O) có A,B,M,C cùng thuộc (O)
nên ABMC là tứ giác nội tiếp
=>\(\widehat{BMC}+\widehat{BAC}=180^0\)
=>\(\widehat{BMC}=180^0-\widehat{BAC}=180^0-60^0=120^0\)
=>\(\widehat{BMC}=\widehat{BDA}\left(=120^0\right)\left(4\right)\)
Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{BCM}\) là góc nội tiếp chắn cung BM
Do đó: \(\widehat{BAM}=\widehat{BCM}\)
=>\(\widehat{BAD}=\widehat{MCB}\left(3\right)\)
Xét ΔBAD có \(\widehat{BAD}+\widehat{BDA}+\widehat{ABD}=180^0\)
=>\(\widehat{ABD}=180^0-\widehat{BAD}-\widehat{BDA}\)(1)
Xét ΔBMC có \(\widehat{BMC}+\widehat{MBC}+\widehat{MCB}=180^0\)
=>\(\widehat{MBC}=180^0-\widehat{BMC}-\widehat{MCB}\left(2\right)\)
Từ (1),(2),(3),(4) suy ra \(\widehat{ABD}=\widehat{MBC}\)
Xét ΔBDA và ΔBMC có
BA=BC
\(\widehat{ABD}=\widehat{MBC}\)
BD=BM
Do đó: ΔBDA=ΔBMC
=>AD=MC
AM=AD+DM
mà AD=MC và DM=MB
nên AM=BM+CM