Cho tam giác ABC đều có độ dài các cạnh là 6 cm . Gọi M,N lần lượt là trung điểm của AB,AC. Gọi O là giao điểm của BN và CM
a, Tính độ dài MN
b,tính độ dài AO
c,chứng minh tứ giác MNCB là hình thang cân
tam giác ABC cân tại A, M là trung điểm của AB, N là trung điểm của AC, AB=AC=5cm.
a, tính độ dài MN
b, chứng minh tứ giác MNCB là hình thang cân
Bài 6. Cho tam giác ABC cân tại A có AB = AC = 6 cm, BC = 5 cm. Gọi D, E lần lượt là trung điểm của AB và AC. Gọi P, Q lần lượt là trung điểm của BD và CE. a) Chứng minh rằng: tứ giác BCED là hình thang cân. b) Tính độ dài đoạn thẳng PQ.
cho tam giác ABCcân tại A có AB =5cm,BC=6cm ,đường cao AH. Gọi M,N lần lượt là trung điểm AB,AC lấy P sao cho N là trung điểm MP ,lấy Q sao cho N là trung điểm HQ .gọi O là giao điểm của AH và MN
a)tính độ dài NM
b)chứng minh tứ giác MNCB là hình thang cân
c)chứng minh tứ giác MPCBà hình bình hành ,AHCP là hcn
d) tứ giác AMHC là hình gì?vì sao?
e) chứng minh 3 điểm B,O,Q thẳng hàng
Cho tam giác ABC cân tại A có A =70 độ . Gọi M, N lần lượt là trung điểm của AB và AC. a/ Tính số đo của cạnh BC, biết MN = 8cm. b/ Chứng minh tứ giác MNCB là hình thang cân. c/ Tính số đo các góc của hình thang cân MNCB
Cho tam giác ABC có M , N lần lượt là trung điểm của AB , AC .
a ) Chứng minh : Tứ giác BMNC là hình thang .
b ) Cho BC = 6 cm . Tính độ dài MN .
c ) Gọi E là trung điểm của BC . Chứng minh : Tứ giác MNCE là hình bình hành .
d ) Gọi D là điểm đối xứng của M qua N . Chứng minh : Tứ giác BMDC là hình bình hành .
e ) Gọi O là giao điểm của DB và MC . Chúng minh E , O , N thẳng hàng .
Cho tam giác ABC vuông tại A. Biết AB = 15 cm, AC = 20 cm. Gọi M, N lần lượt là trung điểm các cạnh AB, BC.
a) Tính độ dài MN và AN? (1đ)
b) Gọi D là điểm đối xứng của A qua N. Chứng minh tứ giác ABDC là hình chữ nhật.
c) Gọi E là điểm đối xứng của N qua M. Chứng minh tứ giác ANBE là hình thoi.
Cho tam giác ABC có M, N lần lượt là trung điểm của AB , AC . Cho BC = 6cm
a ) Chứng minh tứ giác BMNC là hình thang
b) Tính độ dài MN
c) Gọi E là trung điểm của BC . Chứng minh tứ giác MNCE là hình bình hành
d) gọi D là điểm đối xứng của M qua N . Chứng minh tứ giác BMDC là hình bình hành . Gọi O là giao điểm của DB và MC . Chứng minh E , O , N thẳng hàng
Bài 5: Cho tam giác ABC vuông tại A,
AB=12 cm BC=13 cm .
Gọi M, N lần lượt là trung
điểm của AB và BC
a) Chứng minh
MN vuông góc AB
b) Tính độ dài MN
Bài 6: Cho tam giác ABC; Gọi M, N, P lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi I
là giao điểm của AP và MN. C/m: a) IA = IP b) IM = IN.
Bài 7: Cho tam giác ABC cân tại A, đường cao AD, kẻ DH vuông góc AC. Gọi I là trung điểm
của DH, M là trung điểm của HC.
C/m:a) IM vuông góc AD b) AI vuông góc DM.