Gọi 2 trung tuyến AD và BE cắt nhau tại G
Theo công thức trung tuyến:
\(BE^2=\dfrac{2\left(a^2+c^2\right)-b^2}{4}\)
Mà \(BG=\dfrac{2}{3}BE\Rightarrow BG^2=\dfrac{2\left(a^2+c^2\right)-b^2}{9}\)
Tương tự ta có \(AG^2=\dfrac{2\left(b^2+c^2\right)-a^2}{9}\)
Pitago cho tam giác vuông ABG:
\(AB^2=AG^2+BG^2\Leftrightarrow c^2=\dfrac{2\left(a^2+c^2\right)-b^2+2\left(b^2+c^2\right)-a^2}{9}\)
\(\Leftrightarrow a^2+b^2=5c^2\)
b.
Theo định lý hàm sin:
\(\dfrac{a}{sinA}=\dfrac{b}{sinC}=\dfrac{c}{sinC}=2R\Rightarrow\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\)
\(\Rightarrow cotA=\dfrac{cosA}{sinA}=\dfrac{b^2+c^2-a^2}{2bc}.\dfrac{2R}{a}=\dfrac{b^2+c^2-a^2}{abc}.R\)
Tương tự: \(cotB=\dfrac{a^2+c^2-b^2}{abc}.R\); \(cotC=\dfrac{a^2+b^2-c^2}{abc}.R\)
\(\Rightarrow cotA+cotB=\left(b^2+c^2-a^2+a^2+c^2-b^2\right).\dfrac{R}{abc}=\dfrac{2c^2}{abc}.R\)
Mà theo câu a ta có \(5c^2=a^2+b^2\Rightarrow2c^2=\dfrac{a^2+b^2-c^2}{2}\)
\(\Rightarrow cotA+cotB=\dfrac{1}{2}.\dfrac{a^2+b^2-c^2}{abc}.R=\dfrac{1}{2}cotC\)
\(\Rightarrow cotC=2\left(cotA+cotB\right)\)