Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Cho \(\Delta ABC\)có các đường phân giác BD,CE cắt nhau tại I và ID = IE
CMR : \(\widehat{B}=\widehat{C}\)hoặc \(\widehat{B}+\widehat{C}=120^o\)
Cho tam giác ABC có \(\widehat{B}\) = 90◦ và \(\widehat{A}=\widehat{C}\) . Hai tia phân giác AD và CE lần lượt của các góc \(\widehat{BAC},\widehat{ACB}\) cắt nhau tại I. Chứng minh rằng ID = IE.
Cho tam giác ABC, 2 đường phân giác BD và CE cắt nhau tại I. Biết ID=IE. Chứng minh rằng hoặc tam giác ABC cân tại A hoặc \(\widehat{BAC}=60^o\)
Cho tam giác ABC có \(\widehat{A}=60^o\) kẻ BD, CE là các tia phân giác của các góc \(\widehat{B}\)và \(\widehat{C}\)( D thuộc AC, E thuộc AB). BD và CE cắt nhau tại I.
a) Tính số đo \(\widehat{BIC}\)
b) Kẻ IF là tia phân giác của \(\widehat{BIC}\)( F thuộc BC). Chứng minh rằng :
\(\Delta BEI=\Delta BFI\)BE+CD=BCID=IE=IFcho tam giác ABC, các tia phân giác của \(\widehat B \) và \(\widehat C\) cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB ở D, cắt AC tại. Chứng minh DE=DB+CE.
Bài 1:
Cho hai đoạn thẳng BD và CE cắt nhau tại A. Hai tia phân giác của hai góc \(\widehat{AED}\) và \(\widehat{ABC}\) cắt nhau tại O. CMR: \(\widehat{BOE}\) = \(\dfrac{1}{2}\left(\widehat{EDB}+\widehat{ECB}\right)\)
Cho tam giác ABC có \(\widehat{B}=\widehat{C}\). Tia phân giác BD và CE của \(\widehat{B}\)và \(\widehat{C}\)cắt nhau tại O. Từ O kẻ OH vuông góc với AB. Chứng minh:
a) Tam giác BCD = tam giác CBE
b) OB = OC
c) OH = OK
cho tam giác ABC nhọn có góc A= 600. các đường phân giác của \(\widehat{B}\)và \(\widehat{C}\)cắt nhau tại O và cắt AC, AB lần lượt tại E, D. tia phân giác của \(\widehat{BOC}\)cắt BC tại F
a) tính \(\widehat{BOC}\)
b) chứng minh BD+CE=BC
c) chứng minh tam giác DEF đều
Cho tam giác ABC,các tia phân giác của góc B,C cắt nhau tại I
Gọi ID,IE,IF theo thứ tự là các đường vuông góc kẻ từ I đến BC,CA,AB.Chứng minh rằng \(\widehat{FDE}=90^o-\frac{\widehat{BAC}}{2}\)