Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Trần Quỳnh Anh

Cho tam giác ABC có BC=a, M là trung điểm cạnh BC. Gọi r;r1;r2 lần lượt là bán kính các đường tròn nội tiếp tam giác ABC, MAB, MAC

Chứng minh: \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{2}{a}\right)\)

Tran Le Khanh Linh
11 tháng 4 2020 lúc 8:38

Vẽ đường cao AH của \(\Delta\)ABC

Ta có: \(S_{MAB}=S_{MAC}=\frac{1}{2}S_{ABC}\)mà AM > AH (AH _|_ HM)
Do đó: \(\frac{4}{a}=\frac{2\cdot AH}{S_{ABC}}\le\frac{2AM}{S_{ABC}}=\frac{AM}{S_{MAB}}\left(1\right)\)

Gọi I là tâm đường tròn nội tiếp \(\Delta\)ABC

Ta có \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}\)

\(\Rightarrow S_{ABC}=\frac{r\cdot BC}{2}+\frac{r\cdot AC}{2}+\frac{r\cdot AB}{2}\)

\(\Rightarrow\frac{2}{r}=\frac{AB+BC+AC}{2S_{MAB}}\)

Tương tự xét \(\Delta\)MAB và \(\Delta\)MAC ta cũng có:

\(\hept{\begin{cases}\frac{2}{r_1}=\frac{AM+AB+\frac{BC}{2}}{S_{MAB}}\\\frac{2}{r_2}=\frac{AM+AC+\frac{BC}{2}}{A_{MAC}}\end{cases}\left(2\right)}\)

Do đó: 

\(\frac{4}{a}+\frac{2}{r}\le\frac{MA}{S_{MAB}}+\frac{AB+BC+AC}{2S_{MAB}}=\frac{1}{2}\left(\frac{AM}{S_{MAB}}+\frac{AB+\frac{AC}{2}}{S_{MAB}}\right)+\frac{1}{2}\left(\frac{AM}{S_{MAC}}+\frac{AC+\frac{BC}{2}}{S_{MAC}}\right)=\frac{1}{r_1}+\frac{1}{r_2}\)

Vậy \(\frac{1}{r_1}+\frac{1}{r_2}\ge2\left(\frac{1}{r}+\frac{1}{a}\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
phan tuấn anh
Xem chi tiết
Trần Quang Luân
Xem chi tiết
khôi lê nguyễn kim
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Tạ Duy Phương
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Monster VRK
Xem chi tiết
Thyy
Xem chi tiết
fsdgsdfgsd egdfgsdfg
Xem chi tiết