Trong tam giác ABC. Chứng minh rằng
a) Góc A nhọn khi và chỉ khi a2 < b2 + c2
b) Góc A tù khi và chỉ khi a2 > b2 + c2
c) Góc A vuông khi và chỉ khi a2 = b2 + c2
Cho tam giác ABC biết các cạnh a, b, c thỏa mãn hệ thức: a(a2 – c2) = b(b2 – c2). Tính góc C.
A. 300
B. 600
C. 900
D. 1200
Cho a, b, c là độ dài ba cạnh của một tam giác.
a) Chứng minh (b - c)2 < a2
b) Từ đó suy ra: a2 + b2 + c2 < 2(ab + bc + ca)
Cho tam giác ABC. Biết các cạnh a, b, c thoả mãn hệ thức: b(b2 - a2) = c(c2 - a2). Tìm mệnh đề đúng?
A. Tam giác ABC là tam giác đều
B. Tam giác ABC là tam giác cân
C. Tam giác ABC là tam giác tù
D. tam giác ABC là tam giác nhọn
Cho tam giác ABC có a 2 = b 2 + c 2 - b c . Số đo của góc A là
A. 135 °
B. 150 °
C. 60 °
D. 120 °
Tam giác ABC vuông tại A có đường cao AH = h và có BC = a, CA = b, AB = c. Gọi BH = c’ và CH = b’(h.2.11). Hãy điền vào các ô trống trong các hệ thức sau đây để được các hệ thức lượng trong tam giác vuông:
a2 = b2 + (.....)
b2 = a x (.....)
c2 = a x (.....)
h2 = b’ x (.....)
ah = b x (.....)
Cho tam giác ABC có a 2 = b 2 + c 2 + 2 b c . Số đo của góc A là
A. 135 °
B. 45 °
C. 120 °
D. 150 °
Cho a, b, c là độ dài ba cạnh của tam giác. Sử dụng định lí về dấu tam thức bậc hai, chứng mình rằng:
b2x2 - (b2 + c2 - a2)x + c2 > 0 ∀x
Cho a ≥ 0 ; b ≥ 0 ; c ≥ 0.
cmr( a2 + 2)( b2+ 2 ) ( c2 + 2 ) ≥ 16\(\sqrt{2}\)abc
Cho tam giác ABC có a2 + b2 - c2 > 0. Khi đó :
A. Góc C > 900.
B. Góc C < 900.
C. Góc C = 900.
D. Không thể kết luận được gì về góc C.