Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
Ta có: AB=AE
nên A nằm trên đường trung trực của BE(1)
Ta có: DB=DE
nên D nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy AD là đường trung trực của BE
hay AD\(\perp\)BE
Ta có:
AB = AE
=> Tam giác ABE cân tại A
Gọi I là giao điểm AD và BE
Xét tam giác ABI và tam giác AEI
AB = AE
Góc BAI = góc EAI
AD: cạnh chung
=> Tam giác ABI = tam giác AEI (c-g-c)
=> Góc AIB = góc AIE (góc tương ứng)
Mà góc AIB + góc AIE = 180 (kề bù)
=> AIB = AIE = 90
=> AD vuông góc với BE
Gọi giao điểm AD và BE là I
Xét tg ABI và tg AEI có
AI chung
BAI = IAE( AD pg A)
AB=AE(gt)
=> tg ABI=tg AEI(c.g.c)
=> AIB=AIE( 2 góc t/ứ)
Mà BIE=180 độ; AIB+AIE=BIE =180 độ
=>AIB=BIE =180 :2=90 độ
=> AD vg góc với BE