Do \(C\in AC\Rightarrow C\left(a;2-a\right)\)
Do M là trung điểm BC nên \(\left\{{}\begin{matrix}x_B=2x_M-x_C=-2-a\\y_B=2y_M-y_C=a\end{matrix}\right.\) \(\Rightarrow B\left(-2-a;a\right)\)
Do \(B\in AB\Rightarrow2x_B+6y_B+3=0\)
\(\Rightarrow2\left(-2-a\right)+6a+3=0\Rightarrow4a=1\Rightarrow a=\frac{1}{4}\) \(\Rightarrow C\left(\frac{1}{4};\frac{7}{4}\right)\)
\(\Rightarrow\overrightarrow{MC}=\left(\frac{5}{4};\frac{3}{4}\right)\)
\(\Rightarrow\) chọn \(\overrightarrow{n_{BC}}=\left(3;-5\right)\) là 1 vtpt của BC
\(\Rightarrow\) Phương trình BC:
\(3\left(x+1\right)-5\left(y-1\right)=0\Leftrightarrow3x-5y+8=0\)