Do \(B\in AB\Rightarrow B\left(b;\frac{-2b-3}{6}\right)\)
\(C\in AC\Rightarrow C\left(2-c;c\right)\)
Do M là trung điểm BC nên: \(\left\{{}\begin{matrix}x_B+x_C=2x_M\\y_B+y_C=2y_M\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b+2-c=-2\\\frac{-2b-3}{6}+c=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b-c=-4\\-2b+6c=15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-\frac{9}{4}\\c=\frac{7}{4}\end{matrix}\right.\)
\(\Rightarrow B\left(-\frac{9}{4};\frac{1}{4}\right);C\left(\frac{1}{4};\frac{7}{4}\right)\)
\(\Rightarrow\overrightarrow{BC}=\left(\frac{5}{2};\frac{3}{2}\right)=\frac{1}{2}\left(5;3\right)\)
\(\Rightarrow\) Phương trình BC: \(\left\{{}\begin{matrix}x=-1+5t\\y=1+3t\end{matrix}\right.\)