Cho tam giác ABC có AB < AC và hai đường cao AD, CE cắt nhau tại H.
a) Chứng minh B, D, C, E cùng nằm trên một đường tròn. Xác định tâm I của đường tròn đó.
b) Chứng minh AB. AE = AC. AD.
c) Gọi K là điểm đối xứng với H qua I. Chứng minh tứ giác BHCK là hình bình hành.
d) Xác định tâm O của đường tròn đi qua các điểm A, B, K, C.
e) Chứng minh OI // AH.
Sửa đề: Đường cao BD
a: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)
Do đó: BEDC là tứ giác nội tiếp
hay B,E,D,C cùng thuộc 1 đường tròn
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AD\cdot AC=AE\cdot AB\)