Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiên trường

Cho tam giác ABC cân tại A,M là trung điểm của BC. a) chứng minh: tam giác ABC = tâm giác ACM. b) trên tia đổi của tia MA lấy điểm D sao cho MD=MA. Chứng minh: CD//AB. c) gọi I là trung điểm của AC. Trên tia đổi của tia IB lấy điểm E sao cho IE=IB. Chứng minh: ba điểm D,C,E thẳng hàng và C là trung điểm của DE. Giúp mình

a: Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔIAB và ΔICE có

IA=IC

\(\widehat{AIB}=\widehat{CIE}\)(hai góc đối đỉnh)

IB=IE

Do đó: ΔIAB=ΔICE

=>\(\widehat{IAB}=\widehat{ICE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: D,C,E thẳng hàng

Ta có: AB=CE(ΔIAB=ΔICE)

AB=CD(ΔIAB=ΔIDC)

Do đó: CE=CD
mà D,C,E thẳng hàng

nên C là trung điểm của DE


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Le bao nguyen
Xem chi tiết
Hoa Thiên Cốt
Xem chi tiết
22_Nguyễn Thụy Ngọc Minh
Xem chi tiết
Châu nguyên huyền trân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
kim kim
Xem chi tiết
Lê Tú
Xem chi tiết