Ta có: \(AE=\dfrac{AB}{2}\)
\(AF=\dfrac{AC}{2}\)
mà AB=AC
nên AE=AF
Ta có: \(AE=\dfrac{AB}{2}\)
\(AF=\dfrac{AC}{2}\)
mà AB=AC
nên AE=AF
Cho tam giác ABC , định trên cạnh AB và AC các điểm D và E sao cho BD = CE . Gọi M là trung điểm của DE , N là trung điểm của BC . I và F lần lượt là giao điểm của MN với AC và AB . Chứng minh tam giác AIF cân
Bài 8: Cho tam giác ABC (AB < AC). Gọi D là điểm nằm giữa A và B, E là điểm nằm giữa A và C sao cho BD = CE. Gọi M, N, I lần lượt là trung điểm của BC, DE, BE.
a, Chứng minh tam giác MIN cân.
b, Đường thẳng MN cắt đường thẳng AB ở P, cắt đường thẳng AC ở Q. Chứng minh tam giác APQ cân.
c, Kẻ phân giác AF của tam giác ABC. Chứng minh MN song song với AF.
Bài 8: Cho tam giác ABC (AB < AC). Gọi D là điểm nằm giữa A và B, E là điểm nằm giữa A và C sao cho BD = CE. Gọi M, N, I lần lượt là trung điểm của BC, DE, BE.
a, Chứng minh tam giác MIN cân.
b, Đường thẳng MN cắt đường thẳng AB ở P, cắt đường thẳng AC ở Q. Chứng minh tam giác APQ cân.
c, Kẻ phân giác AF của tam giác ABC. Chứng minh MN song song với AF.
Bài 8: Cho tam giác ABC (AB < AC). Gọi D là điểm nằm giữa A và B, E là điểm nằm giữa A và C sao cho BD = CE. Gọi M, N, I lần lượt là trung điểm của BC, DE, BE.
a, Chứng minh tam giác MIN cân.
b, Đường thẳng MN cắt đường thẳng AB ở P, cắt đường thẳng AC ở Q. Chứng minh tam giác APQ cân.
c, Kẻ phân giác AF của tam giác ABC. Chứng minh MN song song với AF.
Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH, MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).
b) Chứng minh tứ giác BHKM là hình bình hành
c) Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE, AF lần lượt tại I và J. Chứng minh HI = KJ.
d) Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 43 (cm). Tính độ dài EF.
Cho tam giác ABC đều. M là điểm bất kì thuộc BC,E và F theo thứ tự là hình chiếu của M trên AB và AC.
a.Chứng minh tam giác EBM đồng dạng với tam giác FCM
b.Vẽ đường cao AD của tam giác ABC, gọi I là trung điểm của AM.Chứng minh góc IED bằng góc IDE
c.Chứng minh: Tứ giác DEIF là hình thoi
d.Gọi H là trực tâm của tam giác ABC. Chứng minh ID, EF, MH đồng quy
1) Cho tam giác ABC có AB<AC, AH là đường cao. Goi M, N, K lần lượt là trung điểm AB, AC, BC
a)Chứng minh MNKH là hình thang cân
b)Tia AH và tia AK lần lượt lấy điểm E và D sao cho H là trung điểm AE và K là trung điểm của AD. Chứng minh tứ giác BCDE là hình thang cân
2) Cho tam giác ABC có Â>90 độ. Bên ngoài tam giác ABC, vẽ tam giác ABD và tam giác ACE vuông cân tại A
a) Chứng minh CD=BE
b) Gọi M,N,P lần lượt là trung điểm của BD, CE, BC. Chứng minh tam giác MNPlà tam giác vuông cân
cho tam giác abc cân tại A trên AB,AC đặt E,F sao cho AE=AF
a/ Chứng minh BEFC là hình thang cân
b/ gọi I là giao điểm BF,CE và MN lần lượt là trung điểm IB,IC. Chứng minh MNFE là hình thang cân
Cho tam giác ABC nhọn, các đường trung tuyến BM và CN. Gọi E và F lần lượt là điểm đối xứng của B qua M; của C qua N. Chứng minh a. Xét tam giác ABC: M, N lần lượt là trung điểm AB, AC (gt) => MN là đường trung bình của tam giác ABC (đ/n) => MN // BC (t/c) => Tứ giác MNCB là hình thang (dhnb) M BC a, Tứ giác ABCE là hình bình hành b, BF// = AC M c. A là trung điểm của EF