a: Xét ΔBDC có
H,N lần lượt là trung điểm của BC và BD
nên HN là đường trung bình
=>HN//DC và HN=DC/2
b Xét ΔANH có DI//NH
nen AD/DN=AI/IH=1
=>AD=DN=NB
=>AD=1/3AB
a: Xét ΔBDC có
H,N lần lượt là trung điểm của BC và BD
nên HN là đường trung bình
=>HN//DC và HN=DC/2
b Xét ΔANH có DI//NH
nen AD/DN=AI/IH=1
=>AD=DN=NB
=>AD=1/3AB
Cho tam giác ABC cân tại A. M là trung điểm của đường cao AH. D là giao điểm của CM và AB.
a) Gọi N là trung điểm của BD. Chứng minh HN song song với DC
b) Chứng minh AD = \(\frac{1}{3}\)AB và DM = \(\frac{1}{2}\)HN
1)cho tam giác ABC cân tại A.Gọi M là trung điểm của đường cao AH, D là giao điểm của CM và AB,N là trung điểm của BD.
a)chứng minh HN//BC
B)chứng minh AD=1phần 3 AB
(Vẽ hình dùm mình luongg nha)
2)Cho tam giác ABC cân tại A, đường cao AD kẽ DA vuông góc AC(H thuộc AC).Gọi I là trung điểm của DA,M là trung điểm của HC.chứng minh :
a)IM vuông góc AD
b)AI vuông góc DM
(Vẽ hình dùm mình luongg nha)
Cho tam giác ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC
b) Chứng minh IH/IA = AD/DC
c) Chứng minh AB.BI = BD.HB và tam giác AID cân.
Cho tam giác ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC
b) Chứng minh IH/IA = AD/DC
c) Chứng minh AB.BI = BD.HB và tam giác AID cân.
Cho tam giác ABC vuông tại A, AB= 6, AC= 8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC
b) Chứng minh \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
c) Chứng minh AB.BI=BH.HB và tam giác AID cân
Cho tam giác cân ABC, cân tại A. Gọi M là trung điểm của đường cao AH. D là giao điểm của CM và AB. Chứng minh AD = 1/3 AB
cho tam giác ABC cân tại A, đường cao AH,Gọi I là trung điểm AH,N là trung điểm AB,E là giao điểm của CI và HN, chứng minh :
a) AE // HC
b) AEBH là hình chữ nhật
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
cho tam giác abc vuông cân tại a, đường cao ah và m là trung điểm ac.
a) chứng minh hm // ab và hm= ab:2
b) vẽ cn vuông góc với bm tại n. gọi d là giao điểm của hai đường thẳng ab và cn. chứng minh tứ giác admh là hình bình hành
c) chứng minh ad=am
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC) a) Chứng minh tứ giác ADHE là hình chữ nhật. b) Gọi I là trung điểm của đoạn thẳng HC. Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng AC // HK. c) Chứng minh tứ giác DECK là hình thang cân. d) Gọi O là giao điểm của DE và AH; Gọi M là giao điểm của AI và CO. Chứng minh AM = 1/3 AK