a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D
a: Xet ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D
. Cho tam giác ABC cân tại A, AH là đường phân giác (H thuộc BC). a) Chứng minh: tam giác ABH = tam giác ACH. b) Gọi I là trung điểm của cạnh AC, trên tia đối của tia IH lấy điểm F sao cho IF=IH. Chứng minh: AH = FC. c) Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt tia FC tại K. Chứng minh: HC là tia phân giác của góc FHK d) Gọi M là giao điểm của HC và KI, tia FM cắt HK tại E. Biết AH=4cm, chứng minh: chu vi tam giác HIE lớn hơn 8cm
Cho tam giác ABC cân tại A và AH vuông với BC tại H(H thuộc BC)
a)Chứng minh tam giác ABH=tam giác ACH và H la trung điểm cảu BC.
b)Gọi M là trung điểm của AC,BM cắt AH tại I.
Qua C kẻ đường thẳng song song với AB,đường thẳng này cắt tia BM tại E
Chứng minh tam giác AMB=tam giác CME và I là trọng tâm của tam giác ABC
c)Từ C kẻ đường thẳng vuông góc với CB cắt ME tại K. Chứng minh AB+BC>3IK.
Cho tam giác ABC cân tại A, lấy điểm H là trung điểm của đoạn thẳng BC.
a) chứng minh tam giác ABH = tam giác ACH.
b) tia phân giác của góc ABC cắt đoạn AB tại M, chứng minh góc ABM =góc ACM và tam giác MBC cân.
c) đường thẳng đi qua A và song song với BC cắt tia BM tại N. Chứng minh AB = AN.
d) chứng minh MC vuông góc CN
Cho tam giác ABC cân tại A, AB > BC, H là trung điểm của BC.
a) Chứng minh: ∆ A B H = ∆ A C H . Từ đó suy ra AH vuông góc với BC.
b) Tính độ dài AH nếu BC = 4 cm, AB = 6 cm.
c) Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân.
d) Đường thẳng đi qua A và song song với BC cắt tia BI, CI lần lượt tại M, N. Chứng minh A là trung điểm của đoạn thẳng MN.
e) Kẻ IE vuông góc với AB tại E, IF vuông góc với AC tại F. Chứng minh IH = IE = IF
f) Chứng minh: IC vuông góc với MC.
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Cho tam giác ABC cân tại A (góc A<90 độ) . Trên cạnh AB và cạnh AC lần lượt lấy điểm D và E sao cho AD = AE.
a/ Chứng minh: tam giác ADC =tam giác AEB
b/ Gọi F là giao điểm của BE và CD. Chứng minh: tam giác FBC là tam giác cân
c/ Chứng minh: AF là tia phân giác của BC và AF đi qua trung điểm M của BC.
d/ Qua C vẽ đường thẳng song song với AB. Đường thẳng này cắt tia DM tại K. Chứng minh: CK = CE
Cho ABC cân tại A, có BAC nhọn. Vẽ AH vuông góc BC tại H. a) Chứng minh: ABH ACH. b) Vẽ đường trung tuyến BK của tam giác ABC cắt AH tại O. Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt AB tại I. Chứng minh: ΔHAI cân và 3 điểm C, O, I thẳng hàng. c) Chứng minh: AH CH
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC cân tại A, đường cao AH. Từ H kẻ đường thẳng Hx song song với AC, Hx cắt AB tại D.
1. Chứng minh tam giác ADH cân và D là trung điểm của AB.
2. Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng và tính hiệu độ dài
AG – GH biết rằng AC = 10cm, HC = 6cm.
3. Gọi p là chu vi tam giác ABC. Chứng minh p > AH + 3BG.