`a)`
Có `Delta ABC` cân tại `A=>hat(ABC)=hat(ACB);AB=AC`
Có `BD` là trung tuyến `=>D` là tđ `AC=>AD=DC`
`CE` là trung tuyeens`=>E` là tđ `AB=>AE=BE`
mà `AB=AC`
nên `CD=BE`
Xét `Delta EBC` và `Delta DCB` có :
`{:(BE=CD(cmt)),(hat(EBC)=hat(DCB)(hat(ABC)=hat(ACB))),(BC-chung):}}`
`=>Delta EBC=Delta DCB(c.g.c)`
`=>CE=BD` ( 2 cạnh t/ứng )
Có đường trung tuyến `BD` và `CE` cắt nhau tại `G`
`=>G` là trọng tâm `=>BG=2/3 BD;CG=2/3 CE`
mà `BD=CE(cmt)`
nên `BG=CG(đpcm)`
Xét ΔABD và ΔACE có
AB=AC
góc A chung
AD=AE
=>ΔABD=ΔACE
=>BD=CE
Xet ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>BG=2/3BD; CG=2/3CE
mà BD=CE
nên BG=CG