Ta có: \(\hat{ABC}+\hat{ABD}=180^0\) (hai góc kề bù)
=>\(\hat{ABD}=180^0-50^0=130^0\)
ΔBAD cân tại B
=>\(\hat{BAD}=\frac{180^0-\hat{ABD}}{2}=\frac{180^0-130^0}{2}=\frac{50^0}{2}=25^0\)
Ta có: \(\hat{ACB}+\hat{ACE}=180^0\) (hai góc kề bù)
=>\(\hat{ACE}=180^0-50^0=130^0\)
ΔCAE cân tại C
=>\(\hat{CAE}=\frac{180^0-\hat{ACE}}{2}=\frac{180^0-130^0}{2}=25^0\)
Ta có: ΔABC cân tại A
=>\(\hat{BAC}=180^0-2\cdot\hat{ABC}=180^0-2\cdot50^0=80^0\)
\(\hat{DAE}=\hat{DAB}+\hat{BAC}+\hat{CAE}\)
\(=25^0+25^0+80^0=50^0+80^0=130^0\)