a: Xét ΔHBA vuông tại H và ΔHCA vuông tại H có
AH chung
AB=AC
Do đó: ΔHBA=ΔHCA
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>góc MAB=góc MAC
c: ΔABM=ΔACM
nên MB=MC
a: Xét ΔHBA vuông tại H và ΔHCA vuông tại H có
AH chung
AB=AC
Do đó: ΔHBA=ΔHCA
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
=>góc MAB=góc MAC
c: ΔABM=ΔACM
nên MB=MC
cho tam giác ABC cân tại A . Từ A kẻ AH vuông góc với BC tại H , trên đoạn thẳng AH lấy điểm M tùy ý ( M khác A và H) . chứng minh rằng: a, BH=CH b, chứng minh ∆ABM=∆ACM c, MB=MC d, ∆MBC cân
cho tam giác ABC cân tại A(góc A nhọn) Vẽ AH vuông góc BC(H thuộc BC).
a) C/m:Tam giác AHB = tam giác AHC
b)Gọi M là trung điểm CH, từ M vẽ đường thẳng vuông góc BC cà cắt AC tại D C/m:Tam giác DMC = tam giác DMH và Hd song song AB
c)BD cắt AH tại G. C/m G là trọng tâm tam giác ABC và 2/3(AH +BD)>AB
Làm hộ mk ạ
Cho tam giác ABC cân tại A. Vẽ AH của góc BAC (H thuộc BC).
a) Chứng minh rằng: tam giác AHB = tam gác AHC
b) Gọi I là trung điểm của HC. Qua I vẻ đường thẳng _|_ với HC, đường thẳng này cắt AC tại D. Chứng minh tam giác DHC cân tại D.
c) Gọi G là giao điểm của AB. Chứng minh GM =1/2 GB
Cho▵ABC cân tại A. Kẻ tia AH vuông góc với BC ( H thuộc BC)
a) Chứng minh▵AHB =▵AHC
b) Chứng minh HB = HC
c) Kẻ IH vuông góc với AB tại I, HK vuông góc với AC tại K. Chứng minh▵AIK là tam giác cân d) Chứng minh IK // BC e) Chứng minh AH là đường trung trực của đoạn thẳng IK
Cho tam giác ABC cân tại A có điểm H là trung điểm của BC
a)Chứng minh tam giác ABH = tam giác ACH.Từ đó suy ra AH vuông góc BC
b)Kẻ HD vuông góc AB và HE vuông góc AC(D thuộc AB,E thuộc AC).Chứng minh BD=CE
c)Chứng minh:DE // BC
d)Lấy điểm M tùy ý trên cạnh HE,trên tia đối của tia EH lấy điểm N sao cho HM = EN.Từ M kẻ đường thẳng vuông góc với HE cắt BC tai I.Chứng minh:IN vuông góc AN.
cho tam giác abc cân tại a (góc a nhọn). từ a kẻ ah vuông góc với bc a) chứng minh tam giác ahb=tam giác ahc và h là trung điểm của bc. b) gọi m trung điểm của ac. qua c kẻ đường thẳng song song với ab cắt bm tại e. chứng minh ab bằng ce và tam giác ace cân tại c. c) gọi i là giao điểm của ah và be . chứng minh i là trọng tâm của tam giác abc . d) chứng minh ab+ae>3bi. lớp 7
Cho tam giác abc cân tại a (ab=ac). Vẽ ah vuông góc với bc tại h (h thuộc bc). a, chứng minh tam giác ahb = tam giác ahc.
b, gọi m là trung điểm ch. từ m vẽ đường vuông góc với bc cắt ac tại d.
c/m tam giác dmc = tam giác dmh và hd // ab. c, vẽ bd cắt ah tại g. c/m g là trọng tâm của tam giác abc và 2/3 (ah+bd) > ab
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H
a/ Chứng minh :tam giác AHB = tam giác AHCvà AH là tia phân giác của góc BAC
b/ Từ H kẻ HM vuông góc với AB, HN vuông góc với AC ,AH cắt MN tại K. Chứng minh AH vuông góc với MN
c/ Trên tia đối của tia HM lấy P sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng.
Cho tam giác ABC cân tại A có AH phân giác góc A cắt BC tại H . chứng minh
a. Tam giác AHB = tam giác AHC
b. BH = Hc
giúp em với ạ