Cho tam giác ABC cân tại A, AB > BC. Tia phân giác của BAC cắt cạnh BC tại H.
a) Chứng minh: AH ⊥ BC.
b) Tính độ dài AH nếu BC = 8cm, AB = 10cm.
c) Tia phân giác của góc ABC cắt AH tại I. Chứng minh tam giác BIC cân.
d) Đường thẳng đi qua A và song song với BC cắt tia BI, CI lần lượt tại M và N.
Chứng minh A là trung điểm của đoạn thẳng MN.
a: ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH vừa là đường cao vừa là đừog trung tuyến
b: Vì H là trung điểm của BC
nên BH=CH=4cm
\(AH=\sqrt{AB^2-AH^2}=2\sqrt{21}\left(cm\right)\)
c: Xét ΔBIC có
IH là đường cao
IH là đường trung tuyến
Do đó:ΔBIC cân tại I