cho tam giác ABC nhọn(AB<AC) nội tiếp (O;R) , các đường cao AD,BE,CF cắt nhau tại H. Vẽ Ax lầ tiếp tuyến của (O). Tia Ax nằm trên nửa mặt phẳng bờ AB có chứa đỉnh C. Gọi K là giao điểm của 2 đường thẳng EF và BC, đường thẳng đi qua F và song song vs AC cắt AK và AD lần lượt tại M,N. Chứng minh MF=NF
Cho tam giác ABC vuông tại A (AB<AC) có AB = 6cm, BC = 10cm
a) Tính độ dài AC
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB
Chứng minh: tam giác ABC = tam giác ADC
c) Qua A vẽ đường thẳng song song với BC cắt DC tại E
Chứng minh: Tam giác AEC cân tại E
d) Gọi F là trung điểm của BC. Trên AC lấy điểm O sao cho AC = 3AO
Chứng minh ba điểm F, O, D thẳng hàng.
Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân
Gợi ý : Trong ∆ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn AD1 sao cho DA1 = AD
Cho tam giác ABC vuông tại A có AB= 9cm ; BC=10cm
a. Tính AC và so sánh các góc tam giác ABC
b. Trên tia đối tia AB lấy điểm D sao cho A là trung điểm BD. Chứng minh tam giác BCD cân
c. Gọi E; F lần lượt là trung điểm các cạnh DC, BC. Đường thẳng BE cắt cạnh AC tại M.
Tính CM và chứng minh 3 điểm D; M; F thẳng hàng
Cho tam giác ABC có hai đỉnh B, C cố định BC = 2a và đỉnh A thay đổi. Qua B dựng đường thẳng d vuông góc với BC, d cắt đường trung tuyến AI của tam giác ABC tại K. Gọi H là trực tâm của tam giác ABC, biết rằng IH song song với KC. Tìm quỹ tích điểm A là
A. Đường thẳng x+2y+4a=0
D. Parabôn y=2ax2
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm
a) Tam giác ABC là tam giác gì? Vì sao?
b) Trên cạnh BC lấy điểm D sao cho BA = BD . Từ D vẽ Dx vuông góc với BC (Dx cắt AC tại H). Chứng minh rằng: BH là tia phân giác của góc ABC
c) Vẽ trung tuyến AM. Chứng minh tam giác ABC cân
Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC.
a) Có nhận xét gì về độ dài EH, EG, EK ?
b) Chứng minh AE là tia phân giác góc BAC.
c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D và F. Chứng minh EA vuông góc với DF.
d) Các đường thẳng EA, FB, DC là các đường gì trong tam giác DEF ?
Cho tam giác ABC vuông tại A và tia phân giác BD. Kẻ DE vuông góc BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng:
a) AB = BE
b) Tam giác CDF cân
c) AE // CF
Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC.
a) Có nhận xét gì về độ dài EH, EG, EK ?
b) Chứng minh AE là tia phân giác góc BAC.
c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D và F. Chứng minh EA vuông góc với DF.
d) Các đường thẳng EA, FB, DC là các đường gì trong tam giác DEF ?