Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến
nên HD=AB/2(1)
Xét ΔABC có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình
=>FE=AB/2(2)
Từ (1), (2) suy ra DH=EF
Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến
nên HD=AB/2(1)
Xét ΔABC có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình
=>FE=AB/2(2)
Từ (1), (2) suy ra DH=EF
Bài 4: Cho tam giác ABC. Gọi D là trung điểm của AB, E là trung điểm của BC. Biết AC = 8cm. DE Tính
Bài 5: Cho tam giác ABC vuông tại A (AB<AC), đường cao AH Tử H vẽ HE và HF lần lượt vuông góc với AB và AC (E = AB Fe AD.
a) Chứng minh AH = EF b) Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tử giác EHKF là hinh binh hành
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân
Cho tam giác ABC vuông tại A, AH là đường cao (H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC). a)Chứng minh AH=EF.
b)Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC ở I. Chứng minh tứ giác AOIK là hình bình hành
Cho tam giác ABC (AB < AC < BC), đường cao AH. Gọi D, E, F lần lượt là trung điểm của các cạnh AB, BC và AC. Gọi I là giao điểm của DF và AE.
b) Chứng I là trung điểm của DF.
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
cho tam giác abc vuông tại a (ab<ac).Vẽ đường cao ah, gọi m,n lần lượt là trung điểm ah, bh.
A) chứng minh tứ giác abnm là hình thang
B) gọi d là trung diểm của cạnh bc, từ d kẻ đg thẳng song song với ac, ab và lần lượt cắt ab tại e, cắt ac tại f. Chứng minh tứ giác aedf là hình chữ nhật
Cho tam giác ABC AB nhỏ hơn AC Gọi D E F lần lượt của các cạnh AB AC BC Chứng minh rằng tứ giác BD EF là hình bình hành vẽ đường cao AH so sánh HE và DF Chứng minh tứ giác EFHD là hình thang cân
Cho tam giác ABC AB nhỏ hơn AC Gọi D E F lần lượt của các cạnh AB AC BC Chứng minh rằng tứ giác BD EF là hình bình hành vẽ đường cao AH so sánh HE và DF Chứng minh tứ giác EFHD là hình thang cân
Cho tam giác ABC. Trên hai cạnh AB, AC lấy hai điểm E, F sao cho EF ∥ BC. Gọi H, G lần lượt là hình chiếu vuông góc của E, F lên BC. Gọi M, N lần lượt là trung điểm của BC và đường cao AI. Chứng minh rằng BN đi qua trung điểm của EH và MN đi qua trung điểm của HF.