Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>ED//BC và \(ED=\dfrac{1}{2}BC\)
Xét hình thang BEDC có
M,N lần lượt là trung điểm của EB,DC
=>MN là đường trung bình của hình thang BEDC
=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{\left(\dfrac{1}{2}BC+BC\right)}{2}=\dfrac{3}{2}BC:2=\dfrac{3}{4}BC\)
Xét ΔBED có MI//ED
nên \(\dfrac{MI}{ED}=\dfrac{BM}{BE}\)
=>\(MI/ED=\dfrac{1}{2}\)
=>\(MI=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)
Xét ΔCED có KN//ED
nên \(\dfrac{KN}{ED}=\dfrac{CN}{CD}=\dfrac{1}{2}\)
=>\(KN=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)
Ta có: MI+IK+KN=MN
=>\(IK+\dfrac{1}{4}BC+\dfrac{1}{4}BC=\dfrac{3}{4}BC\)
=>\(IK=\dfrac{1}{4}BC\)
=>IK=MI=KN