Đáp án B.
Đặt z = x + y i x , y ∈ ℝ suy ra tập hợp các điểm M(z) = (x,y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5 .
Ta có P = z + 2 2 - z - i 2 = x + 2 + y i 2 - x + y - 1 i 2 = x + 2 2 + y 2 - x 2 - y - 1 2
= x 2 + y 2 + 4 x + 4 - x 2 - y 2 + 2 y - 1 = 4 x + 2 y + 3 → ∆ : 4 x + 2 y + 3 - P = 0 .
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung ⇔ d I ; ∆ ≤ R .
⇔ 4 . 3 + 2 . 4 + 3 - P 4 2 + 2 2 ≤ 5 ⇔ 23 - P ≤ 10 ⇔ - 10 ≤ 23 - P ≤ 10 ⇔ 13 ≤ P ≤ 33 .
Do đó, m a x P = 33 m i n P = 13 → w = M + m i = 33 + 13 i ⇒ w = 1258 .