Cho số phức z thỏa mãn z = 1 m 2 + 2 m , trong đó m là số thực dương tùy ý. Biết rằng với mỗi m, tập hợp các điểm biểu diễn số phức w = 2 i + 1 i + z ¯ − 5 + 3 i là một đường tròn bán kính r. Tìm giá trị nhỏ nhất của r
A. 3 2
B. 2 3
C. 3 5
D. 5 3
Cho số phức z thỏa mãn z - 2 + i z ¯ - 2 - i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ - 2 + 3 i là đường tròn có tâm I(a;b) và bán kính c. Giá trị của a+b+c bằng
A. 17
B. 20
C. 10
D. 18
Cho số phức z thỏa mãn z − 2 + i z ¯ − 2 − i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ − 2 + 3 i là đường tròn tâm I a ; b và bán kính c. Giá trị của a + b + c bằng
A. 10
B. 18
C. 17
D. 20
Cho số phức z thỏa mãn: z = m 2 + 2 m + 5 , với m là tham số thực thuộc ℝ . Biết rằng tập hợp các điểm biểu diễn các số phức w = 3 - 4 i z - 2 i là một đường tròn. Tính bán kính r nhỏ nhất của đường tròn đó.
A. r = 20
B. r = 4
C. r = 22
D. r = 5
Cho số phức z thỏa mãn: z = m 2 + 2 m + 5 , với m là tham số thực thuộc ℝ . Biết rằng tập hợp các điểm biểu diễn các số phức w = 3 - 4 i z - 2 i là một đường tròn. Tính bán kính r nhỏ nhất của đường tròn đó.
A. r = 20
B. r = 4
C. r = 22
D. r = 5
Cho số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
A. 7
B. 20
C. 2 5
D. 7
Cho các số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 − 2 i + 4 − 3 i z là một đường tròn. Tính bán kính r của đường tròn đó
A. r = 5
B. r = 2 5
C. r = 10
D. r = 20
Cho số phức z thỏa mãn điều kiện |z|=3 Biết rằng tập hợp tất cả các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính của đường tròn đó là
A. R = 3 2
B. R = 3 5
C. R = 3 3
D. R = 3 7
Cho số phức z thỏa mãn điều kiện z = 3 . Biết rằng tập hợp tất cả các điểm biểu diễn số phức w = 3 - 2 i + 2 - i z là một đường tròn. Hãy tính bán kính của đường tròn đó.
A. 3 5
B. 3 2
C. 3 7
D. 3 3