Cho số phức z thỏa mãn: z = m 2 + 2 m + 5 , với m là tham số thực thuộc ℝ . Biết rằng tập hợp các điểm biểu diễn các số phức w = 3 - 4 i z - 2 i là một đường tròn. Tính bán kính r nhỏ nhất của đường tròn đó.
A. r = 20
B. r = 4
C. r = 22
D. r = 5
Cho số phức z thỏa mãn z = 1 m 2 + 2 m , trong đó m là số thực dương tùy ý. Biết rằng với mỗi m, tập hợp các điểm biểu diễn số phức w = 2 i + 1 i + z ¯ − 5 + 3 i là một đường tròn bán kính r. Tìm giá trị nhỏ nhất của r
A. 3 2
B. 2 3
C. 3 5
D. 5 3
Cho số phức z thỏa mãn z - 2 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 - i ) z + i là một đường tròn. Tính bán kính r của đường tròn đó
A. 2 2
B. 4
C. 2
D. 2
Cho các số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 − 2 i + 4 − 3 i z là một đường tròn. Tính bán kính r của đường tròn đó
A. r = 5
B. r = 2 5
C. r = 10
D. r = 20
Cho số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
A. 7
B. 20
C. 2 5
D. 7
Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = 1 + i 8 z + i là một đường tròn. Bán kính r của đường tròn đó là
A. 9
B. 36
C. 6
D. 3
Cho các số phức z thỏa mãn |z+1|=2. Biết rằng tập hợp các điểm biểu diễn các số phức w = 1 + i 8 z + i là một đường tròn. Bán kính r của đường tròn đó là
A. 9
B. 36
C. 6
D. 3
Cho số phức z thỏa mãn z = 5 . Biết tập hợp các điểm biểu diễn số phức w = 1 + 2 i z + i là một đường tròn. Tìm bán kính r của đường tròn đó.
A. r = 5 .
B. r = 10.
C. r = 5.
D. r = 2 5 .
Cho số phức z thỏa mãn tập hợp z - 1 = 3 . Biết rằng tập hợp các điểm biểu diễn số phức w với 3 - 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I - 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; - 1 2 , r = 3