Đáp án C.
Đặt z = a + b i , a , b ∈ ℝ . Ta có 1 − i z 2 + 2 + 2 i z 2 + 2 z z + i = 0 .
Với a 2 + b 2 > 0 ⇒ z ≠ 0 ; z 2 = z . z ¯ . Ta có
1 ⇔ 1 − i . z . z ¯ + 2 + 2 i z 2 + 2 z z + i = 0 ⇔ 1 − i z ¯ + 2 + 2 i z + 2 z + i = 0
⇔ 1 − i a − b i + 2 + 2 i a + b i + 2 a + b + 1 i = 0
⇔ a − b − a + b i + 2 a − 2 b + 2 a + 2 b i + 2 a + 2 b + 2 i = 0
⇔ 5 a − 3 b + a + 3 b + i = 0 ⇔ 5 a − 3 b = 0 a + 3 b = − 2 ⇔ a = − 1 3 b = − 5 9 ⇒ F = 3 5