Với mỗi số nguyên dương n, kí hiệu Sn = 1!+2!+···+n!. Chứng minh rằng tồn tại số nguyên dương k sao cho Sk có ít nhất một ước nguyên tố lớn hơn 3^2019
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
Có bao nhiêu số nguyên dương n thỏa mãn các điều kiện sau:
i) 219 ≤ n ≤ 2019
ii) Tồn tại x, y ∈ N sao cho 1 ≤ x< n< y và y chia hết cho các số nguyên dương từ 1→ n, trừ 2 số x và x+1
Cho n là số nguyên dương sao cho 2^n − 1 là số nguyên tố, chứng minh rằng số 2^(n−1). (2^n − 1) là một số hoàn hảo
Đặt \(n=p_1^{\alpha_1}.p_2^{\alpha_2}...p_s^{\alpha_s}\) (phân tích tiêu chuẩn). Kí hiệu \(\sigma\left(n\right)=\sum\limits^s_{i=1}\alpha_i\). Chứng minh rằng tồn tại 2023 số nguyên dương liên tiếp sao cho trong đó có 2007 số nguyên \(n\) thỏa \(\sigma\left(n\right)< 11\)
Cho 4 số nguyên dương \(a>b>c>d\) thỏa mãn \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\). Chứng minh rằng \(ab+cd\) không thể là số nguyên tố.
Giả sử a, b là các số nguyên dương lẻ. Chứng minh rằng tồn tại các số nguyên s và t sao cho a=bs+t, trong đó t lẻ và |t|<b
Chứng minh rằng không tồn tại cặp số nguyên dương \(\left(n;k\right)\) với \(k\ge3\) sao cho \(\left(n+1\right)\left(n+2\right)...\left(n+k\right)-k\) là một số chính phương.
Một số nguyên dương n được gọi là "số đẹp" nếu tồn tại các số nguyên dương a, b, c, d sao cho \(n=\frac{2015a^4+b^4}{2015c^4+d^4}\).
a) Chứng minh rằng có vô số "số đẹp".
b) Số 2014 có là "số đẹp" hay không?
1. Cho đa thức \(P\left(x\right)=ax^2+bx+c\left(a\ne0\right)\). CMR tồn tại nhiều nhất một đa thức \(Q\left(x\right)\) bậc \(n\) thỏa mãn \(P\left(Q\left(x\right)\right)=Q\left(P\left(x\right)\right)\)
2. Cho \(a,b,c\) là các số dương thỏa \(a^2+b^2+c^2+abc=4\). CMR \(a+b+c\ge a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}\)
Giúp mình làm mấy bài này với, vài ngày nữa mình phải nộp rồi mà đến giờ mình vẫn chưa nghĩ ra được ý tưởng gì cả. Mình cảm ơn trước nhé.