Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TXT Channel Funfun

Cho số nguyên dương n thỏa mãn 6n2 + 5n + 1 là một số chính phương. Chứng minh rằng : n chia hết cho 40

Agatsuma Zenitsu
7 tháng 2 2020 lúc 0:55

Ta có: \(A=6n^2+5n+1=\left(3n+1\right)\left(2n+1\right)\)là số chính phương.

\(\Rightarrow3n+1,2n+1\)là số chính phương.

\(\Rightarrow3n+1=x^2;2n+1=y^2\)

\(\Rightarrow y\)lẻ.

\(\Rightarrow y=2k+1\Rightarrow2n+1=\left(2k+1\right)^2\Rightarrow n=2k\left(k+1\right)\)

\(\Rightarrow n\)chẵn.

\(\Rightarrow3n+1\) lẻ 

\(\Rightarrow x\)lẻ.

\(\Rightarrow n=x^2-y^2⋮8\)

Lại có: \(x^2+y^2=5n+2\) chia \(5\)dư \(2\)

Vì số chính phương chia \(5\)dư \(0,1,4\)

\(\Rightarrow x^2,y^2\)chia \(5\)dư \(1\)

\(\Rightarrow x^2-y^2⋮5\)

\(\Rightarrow n⋮5\)

\(\Rightarrow n⋮5.8=40\left(đpcm\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Tuấn Kiệt
Xem chi tiết
Kyle Thompson
Xem chi tiết
Unknow
Xem chi tiết
Soorii_eun
Xem chi tiết
khánh Lâm
Xem chi tiết
Dương Thu Ngọc
Xem chi tiết
Nguyễn Thành Long
Xem chi tiết
mai đức anh
Xem chi tiết
Linhhhhhh
Xem chi tiết