cho số nguyên dương n>6 thỏa mãn ( n-1)! +1 chia hết cho n. chứng minh n là số nguyên tố
Cho số nguyên dương n thỏa mãn 6n2 + 5n + 1 là một số chính phương. Chứng minh rằng : n chia hết cho 40
Cho số nguyên dương n thỏa mãn n và 40 là hai số nguyên tố cùng nhau. Chứng minh n4 - 1 chia hết cho 40.
giúp mình với
Cho m, n là các số nguyên thỏa mãn m^2 + n^2 chia hết cho 5. Chứng minh tồn tại ít nhất một trong hai số 2m+n hoặc m+2n chia hết cho 5. nhanh có tick
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
Cho n nguyên dương lướn hơn thỏa mãn n2+4 và n2+6 là các số nguyên tố thì n chia hết cho 5
câu 1 :chứng minh : nn-n^2+n-1 chia hết cho (n-1)^2 với n là số nguyên lớn hơn 1
câu 2 : chứng minh với n lẻ n thuộc N* thì 1^n+2^n+3^n+...+n^n chia hết cho 1+2+3+...+n
câu3: có tồn tại số tự nhiên n để n^2+3n+39 và n^2+n+37 đồng thời chia hết cho 49 không?
Cho a,n đều là số nguyên dương lớn hơn 1, CMR
Nếu an-1 là số nguyên tố thì a=2 và n là số nguyên tố
Nếu an+1 là số nguyên tố thì a chia hết cho2 và n là lũy thừa của 2
chứng minh rằng nếu n là số nguyên dương thì:
2(1^2019+2^2019+3^2019+...+n^2019) chia hết cho n(n+1)