Đề bài sai rồi bạn, AB thuộc (SAB) nên không thể vuông góc (SAB)
Tương tự AD thuộc (SAD) nên AD không thể vuông góc (SAD)
Chỉ có thể là AB vuông góc (SAD), AD vuông góc (SAB)
Đề bài sai rồi bạn, AB thuộc (SAB) nên không thể vuông góc (SAB)
Tương tự AD thuộc (SAD) nên AD không thể vuông góc (SAD)
Chỉ có thể là AB vuông góc (SAD), AD vuông góc (SAB)
cần giải gấp
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a với SA vuông góc (ABCD). Kẻ AH vuông góc SB, AK vuông góc SD.
a) chứng minh CD vuông góc (SAD).
b) Chứng minh AK vuông góc SC
c) Gọi M là giao điểm của SC với (AHK). Chứng minh HK vuông góc AM
d)AK=?, AM=? Biết SA = a\(\sqrt{3}\)
cần giải gấp
Cho hình chóp S.ABCD có đáy là hình vuông cạnh = a, SA vuông góc (ABCD). Kẻ AH vuông góc SB, AK vuông góc SB.
a) BC vuông góc (SAB)
b) AH vuông góc SC
c) Gọi M là giao điểm của SC với (AHK). CM: HK vuông góc với AM
d) AH=?, HK=? biết SA=a\(\sqrt{3}\)
Chóp SABCD , ABCD là hình chữ nhật tâm O SA=5a ; AB=2a ; AD=a căn 3 ; SA vuông góc với đáy a) Cm BC vuông góc (SAB) ; CD vuông góc (SAD ) ; (SCD) vuông góc (SAD) b) Tính góc (SC:SAD) ; (SC:SAD) ; (SC:ABCD) c) Tính khoảng cách từ A đến (SBC) và d(A,(SCD)) d)Tính góc giữa 2 mp (SBD) và (ABCD) ; (SCD) và (ABCD)
cho hình chóp S.ABCD; ABCD là hình vuông cạnh 2a; SA vuông góc với ABCD; SA = a căn 2. Kẻ AH vuôgn góc với Sb; AK vuông góc với SD. Chứng minh rằng: a) BC vuông góc SAB; b) BD vuông góc SAC; c) AH vuông góc SBC; d) SC vuông góc với AKH
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a; AD= 2a; SA vuông góc với đáy, SA=a√2. Xác định và tính góc giữa. a) Các đường thẳng SB, SC, SD với mp đáy. b) SC với các mp (SAD) và ( SAB). c) SA với mp (SCD). d) SB và (SAC).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA vuông góc (ABCD). AH, AK lần lượt là đường cao của tam giác SAB, SAD.
a/ C/m: CD vuông góc SD và AK vuông góc SC.
b/ C/m: SC vuông góc (AHK).
c) Tính góc giữa SO với (ABCD)
d) Tính góc giữa SO với (SAB)
e) Tính khoảng cách từ B đến (SCD)
f) Tính khoảng cách từ H đến (SAC)
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật AB=a , AD=a3 , SA vuông góc (ABCD) , SA=3a
1. Chứng minh BD vuông góc (SAC)
2. Xác định góc giữa SD và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc (ABCD) a, Chứng minh AB vuông góc (SAD) b,Chứng minh AB vuông góc SD
Cho hình chóp SABCD có SA vuông góc với (ABCD) ; đáy ABCD là hình thang vuông tai A và D, AD=DC =a , AB= 2a, SA = a✓3
@) CM CD vuong với (SAD)
B) CM (SAC) vuông voi (SBC)
C) tính góc giua SB và (ABCD) goc giữa SC va (SAB)