b: \(S=3^0+3^2+3^4+...+3^{2002}\)
\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
b: \(S=3^0+3^2+3^4+...+3^{2002}\)
\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
Cho S = 30 + 32 + 34 + ... + 32002
a. Tính S
b. Chứng minh S chia hết cho 7
Cho S=30+32+34+...+32002
a) Tính S
b) Chứng minh S chia hết cho 7
Cho tổng S=3+32+33+34+35+36+37+38
Chứng minh rằng S chia hết cho 30
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39.Chứng tỏ rằng S chia hết cho 13.
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
Cho S = 3^2 + 3^4 + ... + 3^998 + 3^1000
a) tính S
b) Chứng minh rằng S chia cho 7 dư 6
Cho S = 1+3+32+33+34+35+36+37+38+39.Chứng tỏ rằng S chia hết cho 4
Giup mik vs
Cho S = 7/30+7/31+7/32+7/33+7/34
Chứng tỏ S>1. Giúp mk nha mn