S = ( 3 + 32 +33)+(34+35+36) + (37+38+39)
S = 3.(1+3+9)+34.(1+3+9)+37.(1+3+9)
S = 3.13 + 34.13+37.13
S = 13.(3+34+37) ⋮13 ( đpcm)
Tick cho mình
`#3107.101107`
`S = 3 + 3^2 + 3^3 + ... + 3^9`
`= (3 + 3^2 + 3^3) + ... + (3^7 + 3^8 + 3^9)`
`= 3(1 + 3 + 3^2) + ... + 3^7(1 + 3 +3^2)`
`= (1 + 3 + 3^2)(3 + ... + 3^7)`
`= 13(3 + ... + 3^7)` $\vdots 13$
$\Rightarrow S \vdots 13.$