2) Cho Parabol \(\left(P\right):y=\frac{1}{2}x^2\) và đường thẳng \(\left(d\right):y=x+4\)
a)Tìm tọa độ giao điểm A,B của parabol (P) và đường thằng (d)
b)Gọi C là giao điểm của đường thẳng (d) và trục tung,H và K lần lượt là hình chiếu của A và B trên trục hoành .Tính S\(\Delta CHK\)
Tìm tọa độ giao điểm A và B của đồ thi hai hàm số y= 2x+3 và y=x^2. Gọi D và C lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tính Sabcd.
cho p y=x^2 VÀ (d) y=mx+1(m khác 0)
a cm d cắt p tại 2 điểm phân biệt Avà B
b H VÀ K lần lượt là hình chiếu của A B trên Ox gọi I là giao điểm của d với oy
CM tam giác IHK vuông tại I với mọi giá trị của m khác 0
cho hàm số y=x^2 và đường thẳng y=2x+3 cắt nhau tại 2 điểm A và B. Gọi D,C lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tính diện tích ABCD
Cho 2 đường thẳng
(d₁): y = \(\dfrac{1}{2}x+2\)
(d₂): y = \(-x+2\)
a) Vẽ (d₁) và (d₂) trên cùng một hệ trục tọa độ Oxy.
b) Tính góc tạo bởi (d₁) và trục Ox.
c) Gọi A và B lần lượt là giao điểm của (d₁) và (d₂) với trục Ox, C là giao điểm của (d₁) và (d₂). Tính chu vi và diện tích ∆ABC (đơn vị trên hệ trục tọa độ là cm)
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = - x 2 2 . Gọi (d) là đường thẳng đi qua I (0; −2) và có hệ số góc k. Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B. Gọi H, K theo thứ tự là hình chiếu vuông góc của A, B trên trục hoành. Khi đó tam giác IHK là tam giác?
A. Vuông tại H
B. Vuông tại K
C. Vuông tại I
D. Đều
Cho nửa đường tròn tâm O đường kính AB, dây CD có độ dài không đổi và khác AB. Gọi I là hình chiếu vuông góc của O trên CD; H,K theo thứ tự là hình chiếu vuông góc của A,B trên CD
a) Chứng minh I là trung điểm HK
b) Gọi E là hình chiếu vuông góc của I trên AB. Chứng minh rằng Sacb + Sadb = IE.AB
c) Tìm vị trí dây CD để diện tích AHKB lớn nhất
cứu mình với huuhhu
Cho (O;R) đường kính BC và A nằm trên đường tròn sao cho AB < AC . H là hình chiếu của A trên BC . Gọi M và N lần lượt là hình chiếu của H lên AB ,AC, MN cắt BC tại D , AH cắt MN tại I . a, chứng minh tứ giác BMNC nội tiếp và DM.DN=DB.DC b, đường thẳng vuông góc MN tại I ,cắt đường thẳng qua O vuông góc BC tại Q . QH cắt (O) tại P . Tính độ dài IQ theo R và chứng minh 3 điểm D,A,P thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
2. Giả sử M là điểm di chuyển trên đoạn CE .
a. Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A,O,H thẳng hàng, từ đó suy ra tứ giác ABHI nội tiếp.
b. Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O), P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ max.