\(\Delta'=3-m\ge0\Rightarrow m\le3\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)
Do \(\left|x_1-x_2\right|\ge0\Rightarrow3m-4\ge0\Rightarrow m\ge\frac{4}{3}\)
Bình phương 2 vế:
\(\left(x_1-x_2\right)^2=\left(3m-4\right)^2\)
\(\Leftrightarrow x_1^2+x_2^2-2x_1x_2=9m^2-24m+16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9m^2-24m+16\)
\(\Leftrightarrow16-4\left(m+1\right)=9m^2-24m+16\)
\(\Leftrightarrow9m^2+20m+4=0\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{2}{9}< \frac{4}{3}\left(l\right)\\m=-2< \frac{4}{3}\left(l\right)\end{matrix}\right.\)
Vậy ko tồn tại m thỏa mãn