\(\Delta'=\left(m-1\right)^2+m+1=m^2-m+2>0;\forall m\)
Phương trình đã cho luôn luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-1\end{matrix}\right.\)
\(A=\left|x_1-x_2\right|\ge0\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=4\left(m-1\right)^2+4m+4\)
\(=4m^2-4m+8=\left(2m-1\right)^2+7\ge7\)
\(\Rightarrow A\ge\sqrt{7}\Rightarrow A_{min}=\sqrt{7}\) khi \(m=\frac{1}{2}\)