Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đường Nguyễn

Cho pt: x bình -2(m-1)x+2m-5=0 a) biết pt có 1 nghiệm x=3, tìm nghiệm còn lại b) tìm m để pt có 2 nghiệp phân biệt tm: ( x1bình -2mx1+2m-1)(2-x2)=2

a: Thay x=3 vào phương trình, ta được:

\(3^2-2\left(m-1\right)\cdot3+2m-5=0\)

=>\(9-6\left(m-1\right)+2m-5=0\)

=>2m+4-6m+6=0

=>-4m=-10

=>\(m=\dfrac{5}{2}\)

Theo Vi-et, ta có:

\(x_1+x_2=\dfrac{-b}{a}=2\left(m-1\right)=2\left(\dfrac{5}{2}-1\right)=3\)

=>\(x_2=3-x_1=3-3=0\)

b: \(x^2-2\left(m-1\right)x+2m-5=0\)

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=4\left(m^2-2m+1\right)-4\left(2m-5\right)\)

\(=4\left(m^2-4m+6\right)\)

\(=4\left(m^2-4m+4+2\right)\)

\(=4\left(m-2\right)^2+8>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=2m-5\end{matrix}\right.\)

\(x_1^2-2m\cdot x_1+2m-1\)

\(=x_1^2+x_1\left(-2m+2\right)-2x_1+2m-5+4=0-2x_1+4=-2x_1+4\)

\(\left(x_1^2-2mx_1+2m-1\right)\left(2-x_2\right)=2\)

=>\(\left(-2x_1+4\right)\left(2-x_2\right)=2\)

=>\(-2\left(x_1-2\right)\cdot\left(-1\right)\cdot\left(x_2-2\right)=2\)

=>\(\left(x_1-2\right)\left(x_2-2\right)=1\)

=>\(x_1x_2-2\left(x_1+x_2\right)+4=1\)

=>2m-5-2(2m-2)+4=1

=>2m-5-4m+4+4=1

=>-2m+3=1

=>-2m=-2

=>m=1

 

\(\left(x_1^2-2mx_1+2m-1\right)\left(2-x_2\right)=2\)

=>


Các câu hỏi tương tự
Phương Đỗ
Xem chi tiết
Phạm Tuân
Xem chi tiết
nguyenhuutuananh
Xem chi tiết
Phan Nhật Đức
Xem chi tiết
Phương Uyên
Xem chi tiết
Nott mee
Xem chi tiết
Lam Vu
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Lizy
Xem chi tiết
Giang Thị Thanh Vân
Xem chi tiết